Blame view

src/fstext/determinize-star-inl.h 43 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
  // fstext/determinize-star-inl.h
  
  // Copyright 2009-2011  Microsoft Corporation;  Jan Silovsky
  //           2015 Hainan Xu
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #ifndef KALDI_FSTEXT_DETERMINIZE_STAR_INL_H_
  #define KALDI_FSTEXT_DETERMINIZE_STAR_INL_H_
  // Do not include this file directly.  It is included by determinize-star.h
  
  #include "base/kaldi-error.h"
  
  #include <unordered_map>
  using std::unordered_map;
  
  #include <vector>
  #include <climits>
  
  namespace fst {
  
  // This class maps back and forth from/to integer id's to sequences of strings.
  // used in determinization algorithm.
  
  template<class Label, class StringId> class StringRepository {
    // Label and StringId are both integer types, possibly the same.
    // This is a utility that maps back and forth between a vector<Label> and StringId
    // representation of sequences of Labels.  It is to save memory, and to save compute.
    // We treat sequences of length zero and one separately, for efficiency.
  
   public:
    class VectorKey { // Hash function object.
     public:
      size_t operator()(const vector<Label> *vec) const {
        assert(vec != NULL);
        size_t hash = 0, factor = 1;
        for (typename vector<Label>::const_iterator it = vec->begin();
             it != vec->end(); it++) {
          hash += factor*(*it);
          factor *= 103333;  // just an arbitrary prime number.
        }
        return hash;
      }
    };
    class VectorEqual {  // Equality-operator function object.
     public:
      size_t operator()(const vector<Label> *vec1, const vector<Label> *vec2) const {
        return (*vec1 == *vec2);
      }
    };
  
    typedef unordered_map<const vector<Label>*, StringId, VectorKey, VectorEqual> MapType;
  
    StringId IdOfEmpty() { return no_symbol; }
  
    StringId IdOfLabel(Label l) {
      if (l>= 0 && l <= (Label) single_symbol_range) {
        return l + single_symbol_start;
      } else {
        // l is out of the allowed range so we have to treat it as a sequence of length one.  Should be v. rare.
        vector<Label> v; v.push_back(l);
        return IdOfSeqInternal(v);
      }
    }
  
    StringId IdOfSeq(const vector<Label> &v) {  // also works for sizes 0 and 1.
      size_t sz = v.size();
      if (sz == 0) return no_symbol;
      else if (v.size() == 1) return IdOfLabel(v[0]);
      else return IdOfSeqInternal(v);
    }
  
    inline bool IsEmptyString(StringId id) {
      return id == no_symbol;
    }
    void SeqOfId(StringId id, vector<Label> *v) {
      if (id == no_symbol) v->clear();
      else if (id>=single_symbol_start) {
        v->resize(1); (*v)[0] = id - single_symbol_start;
      } else {
        assert(static_cast<size_t>(id) < vec_.size());
        *v = *(vec_[id]);
      }
    }
    StringId RemovePrefix(StringId id, size_t prefix_len) {
      if (prefix_len == 0) return id;
      else {
        vector<Label> v;
        SeqOfId(id, &v);
        size_t sz = v.size();
        assert(sz >= prefix_len);
        vector<Label> v_noprefix(sz - prefix_len);
        for (size_t i = 0;i < sz-prefix_len;i++) v_noprefix[i] = v[i+prefix_len];
        return IdOfSeq(v_noprefix);
      }
    }
  
    StringRepository() {
      // The following are really just constants but don't want to complicate compilation so make them
      // class variables.  Due to the brokenness of <limits>, they can't be accessed as constants.
      string_end = (numeric_limits<StringId>::max() / 2) - 1;  // all hash values must be <= this.
      no_symbol = (numeric_limits<StringId>::max() / 2);  // reserved for empty sequence.
      single_symbol_start =  (numeric_limits<StringId>::max() / 2) + 1;
      single_symbol_range =  numeric_limits<StringId>::max() - single_symbol_start;
    }
    void Destroy() {
      for (typename vector<vector<Label>* >::iterator iter = vec_.begin(); iter != vec_.end(); ++iter)
        delete *iter;
      vector<vector<Label>* > tmp_vec;
      tmp_vec.swap(vec_);
      MapType tmp_map;
      tmp_map.swap(map_);
    }
    ~StringRepository() {
      Destroy();
    }
  
   private:
    KALDI_DISALLOW_COPY_AND_ASSIGN(StringRepository);
  
    StringId IdOfSeqInternal(const vector<Label> &v) {
      typename MapType::iterator iter = map_.find(&v);
      if (iter != map_.end()) {
        return iter->second;
      } else {  // must add it to map.
        StringId this_id = (StringId) vec_.size();
        vector<Label> *v_new = new vector<Label> (v);
        vec_.push_back(v_new);
        map_[v_new] = this_id;
        assert(this_id < string_end);  // or we used up the labels.
        return this_id;
      }
    }
  
    vector<vector<Label>* > vec_;
    MapType map_;
  
    static const StringId string_start = (StringId) 0;  // This must not change.  It's assumed.
    StringId string_end;  // = (numeric_limits<StringId>::max() / 2) - 1; // all hash values must be <= this.
    StringId no_symbol;  // = (numeric_limits<StringId>::max() / 2); // reserved for empty sequence.
    StringId single_symbol_start;  // =  (numeric_limits<StringId>::max() / 2) + 1;
    StringId single_symbol_range;  // =  numeric_limits<StringId>::max() - single_symbol_start;
  };
  
  
  template<class F> class DeterminizerStar {
    typedef typename F::Arc Arc;
   public:
    // Output to Gallic acceptor (so the strings go on weights, and there is a 1-1 correspondence
    // between our states and the states in ofst.  If destroy == true, release memory as we go
    // (but we cannot output again).
    void Output(MutableFst<GallicArc<Arc> >  *ofst, bool destroy = true);
  
    // Output to standard FST.  We will create extra states to handle sequences of symbols
    // on the output.  If destroy == true, release memory as we go
    // (but we cannot output again).
  
    void  Output(MutableFst<Arc> *ofst, bool destroy = true);
  
  
    // Initializer.  After initializing the object you will typically call
    // Determinize() and then one of the Output functions.
    DeterminizerStar(const Fst<Arc> &ifst, float delta = kDelta,
                     int max_states = -1, bool allow_partial = false):
        ifst_(ifst.Copy()), delta_(delta), max_states_(max_states),
        determinized_(false), allow_partial_(allow_partial),
        is_partial_(false), equal_(delta),
        hash_(ifst.Properties(kExpanded, false) ?
                down_cast<const ExpandedFst<Arc>*,
                const Fst<Arc> >(&ifst)->NumStates()/2 + 3 : 20,
              hasher_, equal_),
        epsilon_closure_(ifst_, max_states, &repository_, delta) { }
  
    void Determinize(bool *debug_ptr) {
      assert(!determinized_);
      // This determinizes the input fst but leaves it in the "special format"
      // in "output_arcs_".
      InputStateId start_id = ifst_->Start();
      if (start_id == kNoStateId) { determinized_ = true; return; } // Nothing to do.
      else {  // Insert start state into hash and queue.
        Element elem;
        elem.state = start_id;
        elem.weight = Weight::One();
        elem.string = repository_.IdOfEmpty();  // Id of empty sequence.
        vector<Element> vec;
        vec.push_back(elem);
        OutputStateId cur_id = SubsetToStateId(vec);
        assert(cur_id == 0 && "Do not call Determinize twice.");
      }
      while (!Q_.empty()) {
        pair<vector<Element>*, OutputStateId> cur_pair = Q_.front();
        Q_.pop_front();
        ProcessSubset(cur_pair);
        if (debug_ptr && *debug_ptr) Debug();  // will exit.
        if (max_states_ > 0 && output_arcs_.size() > max_states_) {
          if (allow_partial_ == false) {
            KALDI_ERR << "Determinization aborted since passed " << max_states_
                      << " states";
          } else {
            KALDI_WARN << "Determinization terminated since passed " << max_states_
                       << " states, partial results will be generated";
            is_partial_ = true;
            break;
          }
        }
      }
      determinized_ = true;
    }
  
    bool IsPartial() {
      return is_partial_;
    }
  
    // frees all except output_arcs_, which contains the important info
    // we need to output.
    void FreeMostMemory() {
      if (ifst_) {
        delete ifst_;
        ifst_ = NULL;
      }
      for (typename SubsetHash::iterator iter = hash_.begin();
          iter != hash_.end(); ++iter)
        delete iter->first;
      SubsetHash tmp;
      tmp.swap(hash_);
    }
  
    ~DeterminizerStar() {
      FreeMostMemory();
    }
   private:
    typedef typename Arc::Label Label;
    typedef typename Arc::Weight Weight;
    typedef typename Arc::StateId InputStateId;
    typedef typename Arc::StateId OutputStateId;  // same as above but distinguish states in output Fst.
    typedef typename Arc::Label StringId;  // Id type used in the StringRepository
    typedef StringRepository<Label, StringId> StringRepositoryType;
  
  
    // Element of a subset [of original states]
  
    struct Element {
      InputStateId state;
      StringId string;
      Weight weight;
      bool operator != (const Element &other) const  {
        return (state != other.state || string != other.string ||
                weight != other.weight);
      }
    };
  
    // Arcs in the format we temporarily create in this class (a representation, essentially of
    // a Gallic Fst).
    struct TempArc {
      Label ilabel;
      StringId ostring;  // Look it up in the StringRepository, it's a sequence of Labels.
      OutputStateId nextstate;  // or kNoState for final weights.
      Weight weight;
    };
  
  
    // Hashing function used in hash of subsets.
    // A subset is a pointer to vector<Element>.
    // The Elements are in sorted order on state id, and without repeated states.
    // Because the order of Elements is fixed, we can use a hashing function that is
    // order-dependent.  However the weights are not included in the hashing function--
    // we hash subsets that differ only in weight to the same key.  This is not optimal
    // in terms of the O(N) performance but typically if we have a lot of determinized
    // states that differ only in weight then the input probably was pathological in some way,
    // or even non-determinizable.
    //   We don't quantize the weights, in order to avoid inexactness in simple cases.
    // Instead we apply the delta when comparing subsets for equality, and allow a small
    // difference.
  
    class SubsetKey {
     public:
      size_t operator ()(const vector<Element> * subset) const {  // hashes only the state and string.
        size_t hash = 0, factor = 1;
        for (typename vector<Element>::const_iterator iter = subset->begin();
             iter != subset->end(); ++iter) {
          hash *= factor;
          hash += iter->state + 103333 * iter->string;
          factor *= 23531;  // these numbers are primes.
        }
        return hash;
      }
    };
  
    // This is the equality operator on subsets.  It checks for exact match on state-id
    // and string, and approximate match on weights.
    class SubsetEqual {
     public:
      bool operator ()(const vector<Element> *s1,
                       const vector<Element> *s2) const {
        size_t sz = s1->size();
        assert(sz >= 0);
        if (sz != s2->size()) return false;
        typename vector<Element>::const_iterator iter1 = s1->begin(),
            iter1_end = s1->end(), iter2 = s2->begin();
        for (; iter1 < iter1_end; ++iter1, ++iter2) {
          if (iter1->state != iter2->state ||
             iter1->string != iter2->string ||
             ! ApproxEqual(iter1->weight, iter2->weight, delta_))
            return false;
        }
        return true;
      }
      float delta_;
      SubsetEqual(float delta): delta_(delta) {}
      SubsetEqual(): delta_(kDelta) {}
    };
  
    // Operator that says whether two Elements have the same states.
    // Used only for debug.
    class SubsetEqualStates {
     public:
      bool operator ()(const vector<Element> *s1, const vector<Element> *s2) const {
        size_t sz = s1->size();
        assert(sz>=0);
        if (sz != s2->size()) return false;
        typename vector<Element>::const_iterator iter1 = s1->begin(),
            iter1_end = s1->end(), iter2=s2->begin();
        for (; iter1 < iter1_end; ++iter1, ++iter2) {
          if (iter1->state != iter2->state) return false;
        }
        return true;
      }
    };
  
    // Define the hash type we use to store subsets.
    typedef unordered_map<const vector<Element>*, OutputStateId, SubsetKey, SubsetEqual> SubsetHash;
  
    class EpsilonClosure {
     public:
      EpsilonClosure(const Fst<Arc> *ifst, int max_states,
          StringRepository<Label, StringId> *repository, float delta):
        ifst_(ifst), max_states_(max_states), repository_(repository),
        delta_(delta) {
  
      }
  
      // This function computes epsilon closure of subset of states by following epsilon links.
      // Called by ProcessSubset.
      // Has no side effects except on the repository.
      void GetEpsilonClosure(const vector<Element> &input_subset,
                          vector<Element> *output_subset);
  
     private:
      struct EpsilonClosureInfo {
        EpsilonClosureInfo() {}
        EpsilonClosureInfo(const Element &e, const Weight &w, bool i) :
          element(e), weight_to_process(w), in_queue(i) {}
        // the weight in the Element struct is the total current weight
        // that has been processed already
        Element element;
        // this stores the weight that we haven't processed (propagated)
        Weight weight_to_process;
        // whether "this" struct is in the queue
        // we store the info here so that we don't have to look it up every time
        bool in_queue;
        bool operator<(const EpsilonClosureInfo &other) const {
          return this->element.state < other.element.state;
        }
      };
  
      // to further speed up EpsilonClosure() computation, we have 2 queues
      // the 2nd queue is used when we first iterate over the input set -
      // if queue_2_.empty() then we directly set output_set equal to input_set
      // and return immediately
      // Since Epsilon arcs are relatively rare, this way we could efficiently
      // detect the epsilon-free case, without having to waste our computation e.g.
      // allocating the EpsilonClosureInfo structure; this also lets us do a
      // level-by-level traversal, which could avoid some (unfortunately not all)
      // duplicate computation if epsilons form a DAG that is not a tree
      //
      // We put the queues here for better efficiency for memory allocation
      deque<typename Arc::StateId> queue_;
      vector<Element> queue_2_;
  
      // the following 2 structures together form our *virtual "map"*
      // basically we need a map from state_id to EpsilonClosureInfo that operates
      // in O(1) time, while still takes relatively small mem, and this does it well
      // for efficiency we don't clear id_to_index_ of its outdated information
      // As a result each time we do a look-up, we need to check
      // if (ecinfo_[id_to_index_[id]].element.state == id)
      // Yet this is still faster than using a std::map<StateId, EpsilonClosureInfo>
      vector<int> id_to_index_;
      // unlike id_to_index_, we clear the content of ecinfo_ each time we call
      // EpsilonClosure(). This needed because we need an efficient way to
      // traverse the virtual map - it is just too costly to traverse the
      // id_to_index_ vector.
      vector<EpsilonClosureInfo> ecinfo_;
  
      // Add one element (elem) into cur_subset
      // it also adds the necessary stuff to queue_, set the correct weight
      void AddOneElement(const Element &elem, const Weight &unprocessed_weight);
  
      // Sub-routine that we call in EpsilonClosure()
      // It takes the current "unprocessed_weight" and propagate it to the
      // states accessible from elem.state by an epsilon arc
      // and add the results to cur_subset.
      // save_to_queue_2 is set true when we iterate over the initial subset
      // - then we save it to queue_2 s.t. if it's empty, we directly return
      // the input set
      void ExpandOneElement(const Element &elem,
                            bool sorted,
                            const Weight &unprocessed_weight,
                            bool save_to_queue_2 = false);
  
      // no pointers below would take the ownership
      const Fst<Arc> *ifst_;
      int max_states_;
      StringRepository<Label, StringId> *repository_;
      float delta_;
    };
  
  
    // This function works out the final-weight of the determinized state.
    // called by ProcessSubset.
    // Has no side effects except on the variable repository_, and output_arcs_.
  
    void ProcessFinal(const vector<Element> &closed_subset, OutputStateId state) {
      // processes final-weights for this subset.
      bool is_final = false;
      StringId final_string = 0;  // = 0 to keep compiler happy.
      Weight final_weight = Weight::One();  // This value will never be accessed, and
      // we just set it to avoid spurious compiler warnings.  We avoid setting it
      // to Zero() because floating-point infinities can sometimes generate
      // interrupts and slow things down.
      typename vector<Element>::const_iterator iter = closed_subset.begin(),
          end = closed_subset.end();
      for (; iter != end; ++iter) {
        const Element &elem = *iter;
        Weight this_final_weight = ifst_->Final(elem.state);
        if (this_final_weight != Weight::Zero()) {
          if (!is_final) {  // first final-weight
            final_string = elem.string;
            final_weight = Times(elem.weight, this_final_weight);
            is_final = true;
          } else {  // already have one.
            if (final_string != elem.string) {
              KALDI_ERR << "FST was not functional -> not determinizable";
            }
            final_weight = Plus(final_weight, Times(elem.weight, this_final_weight));
          }
        }
      }
      if (is_final) {
        // store final weights in TempArc structure, just like a transition.
        TempArc temp_arc;
        temp_arc.ilabel = 0;
        temp_arc.nextstate = kNoStateId;  // special marker meaning "final weight".
        temp_arc.ostring = final_string;
        temp_arc.weight = final_weight;
        output_arcs_[state].push_back(temp_arc);
      }
    }
  
    // ProcessTransition is called from "ProcessTransitions".  Broken out for
    // clarity.  Has side effects on output_arcs_, and (via SubsetToStateId), Q_
    // and hash_.
    void ProcessTransition(OutputStateId state, Label ilabel, vector<Element> *subset);
  
    // "less than" operator for pair<Label, Element>.   Used in ProcessTransitions.
    // Lexicographical order, with comparing the state only for "Element".
  
    class PairComparator {
     public:
      inline bool operator () (const pair<Label, Element> &p1, const pair<Label, Element> &p2) {
        if (p1.first < p2.first) return true;
        else if (p1.first > p2.first) return false;
        else {
          return p1.second.state < p2.second.state;
        }
      }
    };
  
  
    // ProcessTransitions handles transitions out of this subset of states.
    // Ignores epsilon transitions (epsilon closure already handled that).
    // Does not consider final states.  Breaks the transitions up by ilabel,
    // and creates a new transition in determinized FST, for each ilabel.
    // Does this by creating a big vector of pairs <Label, Element> and then sorting them
    // using a lexicographical ordering, and calling ProcessTransition for each range
    // with the same ilabel.
    // Side effects on repository, and (via ProcessTransition) on Q_, hash_,
    // and output_arcs_.
    void ProcessTransitions(const vector<Element> &closed_subset, OutputStateId state) {
      vector<pair<Label, Element> > all_elems;
      {  // Push back into "all_elems", elements corresponding to all non-epsilon-input transitions
        // out of all states in "closed_subset".
        typename vector<Element>::const_iterator iter = closed_subset.begin(),
            end = closed_subset.end();
        for (; iter != end; ++iter) {
          const Element &elem = *iter;
          for (ArcIterator<Fst<Arc> > aiter(*ifst_, elem.state);
               !aiter.Done(); aiter.Next()) {
            const Arc &arc = aiter.Value();
            if (arc.ilabel != 0) {  // Non-epsilon transition -- ignore epsilons here.
              pair<Label, Element> this_pr;
              this_pr.first = arc.ilabel;
              Element &next_elem(this_pr.second);
              next_elem.state = arc.nextstate;
              next_elem.weight = Times(elem.weight, arc.weight);
              if (arc.olabel == 0) // output epsilon-- this is simple case so
                                   // handle separately for efficiency
                next_elem.string = elem.string;
              else {
                vector<Label> seq;
                repository_.SeqOfId(elem.string, &seq);
                seq.push_back(arc.olabel);
                next_elem.string = repository_.IdOfSeq(seq);
              }
              all_elems.push_back(this_pr);
            }
          }
        }
      }
      PairComparator pc;
      std::sort(all_elems.begin(), all_elems.end(), pc);
      // now sorted first on input label, then on state.
      typedef typename vector<pair<Label, Element> >::const_iterator PairIter;
      PairIter cur = all_elems.begin(), end = all_elems.end();
      vector<Element> this_subset;
      while (cur != end) {
        // Process ranges that share the same input symbol.
        Label ilabel = cur->first;
        this_subset.clear();
        while (cur != end && cur->first == ilabel) {
          this_subset.push_back(cur->second);
          cur++;
        }
        // We now have a subset for this ilabel.
        ProcessTransition(state, ilabel, &this_subset);
      }
    }
  
    // SubsetToStateId converts a subset (vector of Elements) to a StateId in the output
    // fst.  This is a hash lookup; if no such state exists, it adds a new state to the hash
    // and adds a new pair to the queue.
    // Side effects on hash_ and Q_, and on output_arcs_ [just affects the size].
    OutputStateId SubsetToStateId(const vector<Element> &subset) {  // may add the subset to the queue.
      typedef typename SubsetHash::iterator IterType;
      IterType iter = hash_.find(&subset);
      if (iter == hash_.end()) {  // was not there.
        vector<Element> *new_subset = new vector<Element>(subset);
        OutputStateId new_state_id = (OutputStateId) output_arcs_.size();
        bool ans = hash_.insert(std::pair<const vector<Element>*,
                                          OutputStateId>(new_subset,
                                                         new_state_id)).second;
        assert(ans);
        output_arcs_.push_back(vector<TempArc>());
        if (allow_partial_ == false) {
          // If --allow-partial is not requested, we do the old way.
          Q_.push_front(pair<vector<Element>*, OutputStateId>(new_subset,  new_state_id));
        } else {
          // If --allow-partial is requested, we do breadth first search. This
          // ensures that when we return partial results, we return the states
          // that are reachable by the fewest steps from the start state.
          Q_.push_back(pair<vector<Element>*, OutputStateId>(new_subset,  new_state_id));
        }
        return new_state_id;
      } else {
        return iter->second;  // the OutputStateId.
      }
    }
  
  
    // ProcessSubset does the processing of a determinized state, i.e. it creates
    // transitions out of it and adds new determinized states to the queue if necessary.
    // The first stage is "EpsilonClosure" (follow epsilons to get a possibly larger set
    // of (states, weights)).  After that we ignore epsilons.  We process the final-weight
    // of the state, and then handle transitions out (this may add more determinized states
    // to the queue).
    void ProcessSubset(const pair<vector<Element>*, OutputStateId> & pair) {
      const vector<Element> *subset = pair.first;
      OutputStateId state = pair.second;
  
      vector<Element> closed_subset;  // subset after epsilon closure.
      epsilon_closure_.GetEpsilonClosure(*subset, &closed_subset);
  
      // Now follow non-epsilon arcs [and also process final states]
      ProcessFinal(closed_subset, state);
  
      // Now handle transitions out of these states.
      ProcessTransitions(closed_subset, state);
    }
  
    void Debug();
  
    KALDI_DISALLOW_COPY_AND_ASSIGN(DeterminizerStar);
    deque<pair<vector<Element>*, OutputStateId> > Q_;  // queue of subsets to be processed.
  
    vector<vector<TempArc> > output_arcs_;  // essentially an FST in our format.
  
    const Fst<Arc> *ifst_;
    float delta_;
    int max_states_;
    bool determinized_; // used to check usage.
    bool allow_partial_;  // output paritial results or not
    bool is_partial_;     // if we get partial results or not
    SubsetKey hasher_;  // object that computes keys-- has no data members.
    SubsetEqual equal_;  // object that compares subsets-- only data member is delta_.
    SubsetHash hash_;  // hash from Subset to StateId in final Fst.
  
    StringRepository<Label, StringId> repository_;  // associate integer id's with sequences of labels.
    EpsilonClosure epsilon_closure_;
  };
  
  
  template<class F>
  bool DeterminizeStar(F &ifst, MutableFst<typename F::Arc> *ofst,
                       float delta, bool *debug_ptr, int max_states,
                       bool allow_partial) {
    ofst->SetOutputSymbols(ifst.OutputSymbols());
    ofst->SetInputSymbols(ifst.InputSymbols());
    DeterminizerStar<F> det(ifst, delta, max_states, allow_partial);
    det.Determinize(debug_ptr);
    det.Output(ofst);
    return det.IsPartial();
  }
  
  
  template<class F>
  bool DeterminizeStar(F &ifst,
                       MutableFst<GallicArc<typename F::Arc> > *ofst, float delta,
                       bool *debug_ptr, int max_states,
                       bool allow_partial) {
    ofst->SetOutputSymbols(ifst.InputSymbols());
    ofst->SetInputSymbols(ifst.InputSymbols());
    DeterminizerStar<F> det(ifst, delta, max_states, allow_partial);
    det.Determinize(debug_ptr);
    det.Output(ofst);
    return det.IsPartial();
  }
  
  template<class F>
  void DeterminizerStar<F>::EpsilonClosure::
              GetEpsilonClosure(const vector<Element> &input_subset,
                                         vector<Element> *output_subset) {
    ecinfo_.resize(0);
    size_t size = input_subset.size();
    // find whether input fst is known to be sorted in input label.
    bool sorted =
            ((ifst_->Properties(kILabelSorted, false) & kILabelSorted) != 0);
  
    // size is still the input_subset.size()
    for (size_t i = 0; i < size; i++) {
      ExpandOneElement(input_subset[i], sorted, input_subset[i].weight, true);
    }
  
    size_t s = queue_2_.size();
    if (s == 0) {
      *output_subset = input_subset;
      return;
    } else {
      // queue_2 not empty. Need to create the vector<info>
      for (size_t i = 0; i < size; i++) {
        // the weight has not been processed yet,
        // so put all of them in the "weight_to_process"
        ecinfo_.push_back(EpsilonClosureInfo(input_subset[i],
                                             input_subset[i].weight,
                                             false));
        ecinfo_.back().element.weight = Weight::Zero(); // clear the weight
  
        if (id_to_index_.size() < input_subset[i].state + 1) {
          id_to_index_.resize(2 * input_subset[i].state + 1, -1);
        }
        id_to_index_[input_subset[i].state] = ecinfo_.size() - 1;
      }
    }
  
    {
      Element elem;
      elem.weight = Weight::Zero();
      for (size_t i = 0; i < s; i++) {
        elem.state = queue_2_[i].state;
        elem.string = queue_2_[i].string;
        AddOneElement(elem, queue_2_[i].weight);
      }
      queue_2_.resize(0);
    }
  
    int counter = 0; // relates to max-states option, used for test.
    while (!queue_.empty()) {
      InputStateId id = queue_.front();
  
      // no need to check validity of the index
      // since anything in the queue we are sure they're in the "virtual set"
      int index = id_to_index_[id];
      EpsilonClosureInfo &info = ecinfo_[index];
      Element &elem = info.element;
      Weight unprocessed_weight = info.weight_to_process;
  
      elem.weight = Plus(elem.weight, unprocessed_weight);
      info.weight_to_process = Weight::Zero();
  
      info.in_queue = false;
      queue_.pop_front();
  
      if (max_states_ > 0 && counter++ > max_states_) {
        KALDI_ERR << "Determinization aborted since looped more than "
                  << max_states_ << " times during epsilon closure";
      }
  
      // generally we need to be careful about iterator-invalidation problem
      // here we pass a reference (elem), which could be an issue.
      // In the beginning of ExpandOneElement, we make a copy of elem.string
      // to avoid that issue
      ExpandOneElement(elem, sorted, unprocessed_weight);
    }
  
    {
      // this sorting is based on StateId
      sort(ecinfo_.begin(), ecinfo_.end());
  
      output_subset->clear();
  
      size = ecinfo_.size();
      output_subset->reserve(size);
      for (size_t i = 0; i < size; i++) {
        EpsilonClosureInfo& info = ecinfo_[i];
        if (info.weight_to_process != Weight::Zero()) {
          info.element.weight = Plus(info.element.weight, info.weight_to_process);
        }
        output_subset->push_back(info.element);
      }
    }
  }
  
  template<class F>
  void DeterminizerStar<F>::EpsilonClosure::
       AddOneElement(const Element &elem, const Weight &unprocessed_weight) {
    // first we try to find the element info in the ecinfo_ vector
    int index = -1;
    if (elem.state < id_to_index_.size()) {
      index = id_to_index_[elem.state];
    }
    if (index != -1) {
      if (index >= ecinfo_.size()) {
        index = -1;
      }
      // since ecinfo_ might store outdated information, we need to check
      else if (ecinfo_[index].element.state != elem.state) {
        index = -1;
      }
    }
  
    if (index == -1) {
      // was no such StateId: insert and add to queue.
      ecinfo_.push_back(EpsilonClosureInfo(elem, unprocessed_weight, true));
      size_t size = id_to_index_.size();
      if (size < elem.state + 1) {
        // double the size to reduce memory operations
        id_to_index_.resize(2 * elem.state + 1, -1);
      }
      id_to_index_[elem.state] = ecinfo_.size() - 1;
      queue_.push_back(elem.state);
  
    } else {  // one is already there.  Add weights.
      EpsilonClosureInfo &info = ecinfo_[index];
      if (info.element.string != elem.string) {
        // Non-functional FST.
        std::ostringstream ss;
        ss << "FST was not functional -> not determinizable.";
        { // Print some debugging information.  Can be helpful to debug
          // the inputs when FSTs are mysteriously non-functional.
          vector<Label> tmp_seq;
          repository_->SeqOfId(info.element.string, &tmp_seq);
          ss << "
  First string:";
          for (size_t i = 0; i < tmp_seq.size(); i++)
            ss << ' ' << tmp_seq[i];
          ss << "
  Second string:";
          repository_->SeqOfId(elem.string, &tmp_seq);
          for (size_t i = 0; i < tmp_seq.size(); i++)
            ss << ' ' << tmp_seq[i];
        }
        KALDI_ERR << ss.str();
      }
  
      info.weight_to_process =
            Plus(info.weight_to_process, unprocessed_weight);
  
      if (!info.in_queue) {
        // this is because the code in "else" below: the
        // iter->second.weight_to_process might not be Zero()
        Weight weight = Plus(info.element.weight, info.weight_to_process);
  
        // What is done below is, we propagate the weight (by adding them
        // to the queue only when the change is big enough;
        // otherwise we just store the weight, until before returning
        // we add the element.weight and weight_to_process together
        if (! ApproxEqual(weight, info.element.weight, delta_)) {
          // add extra part of weight to queue.
          info.in_queue = true;
          queue_.push_back(elem.state);
        }
      }
    }
  }
  
  template<class F>
  void DeterminizerStar<F>::EpsilonClosure::ExpandOneElement(
                                            const Element &elem,
                                            bool sorted,
                                            const Weight &unprocessed_weight,
                                            bool save_to_queue_2) {
    StringId str = elem.string; // copy it here because there is an iterator-
                  // - invalidation problem (it really happens for some FSTs)
  
    // now we are going to propagate the "unprocessed_weight"
    for (ArcIterator<Fst<Arc> > aiter(*ifst_, elem.state);
         !aiter.Done(); aiter.Next()) {
      const Arc &arc = aiter.Value();
      if (sorted && arc.ilabel > 0) {
        break;
        // Break from the loop: due to sorting there will be no
        // more transitions with epsilons as input labels.
      }
      if (arc.ilabel != 0) {
        continue;  // we only process epsilons here
      }
      Element next_elem;
      next_elem.state = arc.nextstate;
      next_elem.weight = Weight::Zero();
      Weight next_unprocessed_weight
                     = Times(unprocessed_weight, arc.weight);
  
      // now must append strings
      if (arc.olabel == 0) {
        next_elem.string = str;
      } else {
        vector<Label> seq;
        repository_->SeqOfId(str, &seq);
        if (arc.olabel != 0)
          seq.push_back(arc.olabel);
        next_elem.string = repository_->IdOfSeq(seq);
      }
      if (save_to_queue_2) {
        next_elem.weight = next_unprocessed_weight;
        queue_2_.push_back(next_elem);
      } else {
        AddOneElement(next_elem, next_unprocessed_weight);
      }
    }
  }
  
  template<class F>
  void DeterminizerStar<F>::Output(MutableFst<GallicArc<Arc> > *ofst,
                                     bool destroy) {
    assert(determinized_);
    if (destroy) determinized_ = false;
    typedef GallicWeight<Label, Weight> ThisGallicWeight;
    typedef typename Arc::StateId StateId;
    if (destroy)
      FreeMostMemory();
    StateId nStates = static_cast<StateId>(output_arcs_.size());
    ofst->DeleteStates();
    ofst->SetStart(kNoStateId);
    if (nStates == 0) {
      return;
    }
    for (StateId s = 0;s < nStates;s++) {
      OutputStateId news = ofst->AddState();
      assert(news == s);
    }
    ofst->SetStart(0);
    // now process transitions.
    for (StateId this_state = 0; this_state < nStates; this_state++) {
      vector<TempArc> &this_vec(output_arcs_[this_state]);
      typename vector<TempArc>::const_iterator iter = this_vec.begin(),
          end = this_vec.end();
      for (; iter != end; ++iter) {
        const TempArc &temp_arc(*iter);
        GallicArc<Arc> new_arc;
        vector<Label> seq;
        repository_.SeqOfId(temp_arc.ostring, &seq);
        StringWeight<Label, STRING_LEFT> string_weight;
        for (size_t i = 0;i < seq.size();i++) string_weight.PushBack(seq[i]);
        ThisGallicWeight gallic_weight(string_weight, temp_arc.weight);
  
        if (temp_arc.nextstate == kNoStateId) {  // is really final weight.
          ofst->SetFinal(this_state, gallic_weight);
        } else {  // is really an arc.
          new_arc.nextstate = temp_arc.nextstate;
          new_arc.ilabel = temp_arc.ilabel;
          new_arc.olabel = temp_arc.ilabel;  // acceptor.  input == output.
          new_arc.weight = gallic_weight;  // includes string and weight.
          ofst->AddArc(this_state, new_arc);
        }
      }
      // Free up memory.  Do this inside the loop as ofst is also allocating memory
      if (destroy) { vector<TempArc> temp; temp.swap(this_vec); }
    }
    if (destroy) { vector<vector<TempArc> > temp; temp.swap(output_arcs_); }
  }
  
  template<class F>
  void DeterminizerStar<F>::Output(MutableFst<Arc> *ofst, bool destroy) {
    assert(determinized_);
    if (destroy) determinized_ = false;
    // Outputs to standard fst.
    OutputStateId num_states = static_cast<OutputStateId>(output_arcs_.size());
    if (destroy)
      FreeMostMemory();
    ofst->DeleteStates();
    if (num_states == 0) {
      ofst->SetStart(kNoStateId);
      return;
    }
    // Add basic states-- but will add extra ones to account for strings on output.
    for (OutputStateId s = 0; s < num_states; s++) {
      OutputStateId news = ofst->AddState();
      assert(news == s);
    }
    ofst->SetStart(0);
    for (OutputStateId this_state = 0; this_state < num_states; this_state++) {
      vector<TempArc> &this_vec(output_arcs_[this_state]);
  
      typename vector<TempArc>::const_iterator iter = this_vec.begin(),
          end = this_vec.end();
      for (; iter != end; ++iter) {
        const TempArc &temp_arc(*iter);
        vector<Label> seq;
        repository_.SeqOfId(temp_arc.ostring, &seq);
        if (temp_arc.nextstate == kNoStateId) {  // Really a final weight.
          // Make a sequence of states going to a final state, with the strings as labels.
          // Put the weight on the first arc.
          OutputStateId cur_state = this_state;
          for (size_t i = 0; i < seq.size();i++) {
            OutputStateId next_state = ofst->AddState();
            Arc arc;
            arc.nextstate = next_state;
            arc.weight = (i == 0 ? temp_arc.weight : Weight::One());
            arc.ilabel = 0;  // epsilon.
            arc.olabel = seq[i];
            ofst->AddArc(cur_state, arc);
            cur_state = next_state;
          }
          ofst->SetFinal(cur_state, (seq.size() == 0 ? temp_arc.weight : Weight::One()));
        } else {  // Really an arc.
          OutputStateId cur_state = this_state;
          // Have to be careful with this integer comparison (i+1 < seq.size()) because unsigned.
          // i < seq.size()-1 could fail for zero-length sequences.
          for (size_t i = 0; i+1 < seq.size();i++) {
            // for all but the last element of seq, create new state.
            OutputStateId next_state = ofst->AddState();
            Arc arc;
            arc.nextstate = next_state;
            arc.weight = (i == 0 ? temp_arc.weight : Weight::One());
            arc.ilabel = (i == 0 ? temp_arc.ilabel : 0);  // put ilabel on first element of seq.
            arc.olabel = seq[i];
            ofst->AddArc(cur_state, arc);
            cur_state = next_state;
          }
          // Add the final arc in the sequence.
          Arc arc;
          arc.nextstate = temp_arc.nextstate;
          arc.weight = (seq.size() <= 1 ? temp_arc.weight : Weight::One());
          arc.ilabel = (seq.size() <= 1 ? temp_arc.ilabel : 0);
          arc.olabel = (seq.size() > 0 ? seq.back() : 0);
          ofst->AddArc(cur_state, arc);
        }
      }
      // Free up memory.  Do this inside the loop as ofst is also allocating memory
      if (destroy) { vector<TempArc> temp; temp.swap(this_vec); }
    }
    if (destroy) {
      vector<vector<TempArc> > temp;
      temp.swap(output_arcs_);
      repository_.Destroy();
    }
  }
  
  template<class F> void DeterminizerStar<F>::
  ProcessTransition(OutputStateId state, Label ilabel, vector<Element> *subset) {
    // At input, "subset" may contain duplicates for a given dest state (but in sorted
    // order).  This function removes duplicates from "subset", normalizes it, and adds
    // a transition to the dest. state (possibly affecting Q_ and hash_, if state did not
    // exist).
  
    typedef typename vector<Element>::iterator IterType;
    {  // This block makes the subset have one unique Element per state, adding the weights.
      IterType cur_in = subset->begin(), cur_out = cur_in, end = subset->end();
      size_t num_out = 0;
      // Merge elements with same state-id
      while (cur_in != end) {  // while we have more elements to process.
        // At this point, cur_out points to location of next place we want to put an element,
        // cur_in points to location of next element we want to process.
        if (cur_in != cur_out) *cur_out = *cur_in;
        cur_in++;
        while (cur_in != end && cur_in->state == cur_out->state) {  // merge elements.
          if (cur_in->string != cur_out->string) {
            KALDI_ERR << "FST was not functional -> not determinizable";
          }
          cur_out->weight = Plus(cur_out->weight, cur_in->weight);
          cur_in++;
        }
        cur_out++;
        num_out++;
      }
      subset->resize(num_out);
    }
  
    StringId common_str;
    Weight tot_weight;
    {  // This block computes common_str and tot_weight (essentially: the common divisor)
      // and removes them from the elements.
      vector<Label> seq;
  
      IterType begin = subset->begin(), iter, end = subset->end();
      {  // This block computes "seq", which is the common prefix, and "common_str",
        // which is the StringId version of "seq".
        vector<Label> tmp_seq;
        for (iter = begin; iter != end; ++iter) {
          if (iter == begin) {
            repository_.SeqOfId(iter->string, &seq);
          } else {
            repository_.SeqOfId(iter->string, &tmp_seq);
            if (tmp_seq.size() < seq.size()) seq.resize(tmp_seq.size());  // size of shortest one.
            for (size_t i = 0; i < seq.size(); i++) // seq.size() is the shorter one at this point.
              if (tmp_seq[i] != seq[i]) seq.resize(i);
          }
          if (seq.size() == 0) break;  // will not get any prefix.
        }
        common_str = repository_.IdOfSeq(seq);
      }
  
      {  // This block computes "tot_weight".
        iter = begin;
        tot_weight = iter->weight;
        for (++iter; iter != end; ++iter)
          tot_weight = Plus(tot_weight, iter->weight);
      }
  
      // Now divide out common stuff from elements.
      size_t prefix_len = seq.size();
      for (iter = begin; iter != end; ++iter) {
        iter->weight = Divide(iter->weight, tot_weight);
        iter->string = repository_.RemovePrefix(iter->string, prefix_len);
      }
    }
  
    // Now add an arc to the state that the subset represents.
    // We may create a new state id for this (in SubsetToStateId).
    TempArc temp_arc;
    temp_arc.ilabel = ilabel;
    temp_arc.nextstate = SubsetToStateId(*subset);  // may or may not really add the subset.
    temp_arc.ostring = common_str;
    temp_arc.weight = tot_weight;
    output_arcs_[state].push_back(temp_arc);  // record the arc.
  }
  
  template<class F>
  void DeterminizerStar<F>::Debug() {
    // this function called if you send a signal
    // SIGUSR1 to the process (and it's caught by the handler in
    // fstdeterminizestar).  It prints out some traceback
    // info and exits.
  
    KALDI_WARN << "Debug function called (probably SIGUSR1 caught)";
    // free up memory from the hash as we need a little memory
    { SubsetHash hash_tmp; std::swap(hash_tmp, hash_); }
  
    if (output_arcs_.size() <= 2) {
      KALDI_ERR << "Nothing to trace back";
    }
    size_t max_state = output_arcs_.size() - 2;  // don't take the last
    // one as we might be halfway into constructing it.
  
    vector<OutputStateId> predecessor(max_state+1, kNoStateId);
    for (size_t i = 0; i < max_state; i++) {
      for (size_t j = 0; j < output_arcs_[i].size(); j++) {
        OutputStateId nextstate = output_arcs_[i][j].nextstate;
        // Always find an earlier-numbered predecessor; this
        // is always possible because of the way the algorithm
        // works.
        if (nextstate <= max_state && nextstate > i)
          predecessor[nextstate] = i;
      }
    }
    vector<pair<Label, StringId> > traceback;
    // 'traceback' is a pair of (ilabel, olabel-seq).
    OutputStateId cur_state = max_state;  // A recently constructed state.
  
    while (cur_state != 0 && cur_state != kNoStateId) {
      OutputStateId last_state = predecessor[cur_state];
      pair<Label, StringId> p;
      size_t i;
      for (i = 0; i < output_arcs_[last_state].size(); i++) {
        if (output_arcs_[last_state][i].nextstate == cur_state) {
          p.first = output_arcs_[last_state][i].ilabel;
          p.second = output_arcs_[last_state][i].ostring;
          traceback.push_back(p);
          break;
        }
      }
      KALDI_ASSERT(i != output_arcs_[last_state].size());  // Or fell off loop.
      cur_state = last_state;
    }
    if (cur_state == kNoStateId)
      KALDI_WARN << "Traceback did not reach start state "
      << "(possibly debug-code error)";
  
    std::stringstream ss;
    ss << "Traceback follows in format "
      << "ilabel (olabel olabel) ilabel (olabel) ... :";
    for (ssize_t i = traceback.size() - 1; i >= 0; i--) {
      ss << ' ' << traceback[i].first << " ( ";
      vector<Label> seq;
      repository_.SeqOfId(traceback[i].second, &seq);
      for (size_t j = 0; j < seq.size(); j++)
        ss << seq[j] << ' ';
      ss << ')';
    }
    KALDI_ERR << ss.str();
  }
  
  }  // namespace fst
  
  #endif  // KALDI_FSTEXT_DETERMINIZE_STAR_INL_H_