Blame view
src/fstext/rand-fst.h
4.92 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
// fstext/rand-fst.h // Copyright 2009-2011 Microsoft Corporation // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_FSTEXT_RAND_FST_H_ #define KALDI_FSTEXT_RAND_FST_H_ #include <sstream> #include <string> #include <fst/fstlib.h> #include <fst/fst-decl.h> #include "base/kaldi-math.h" namespace fst { // Note: all weights are constructed from nonnegative floats. // (so no "negative costs"). struct RandFstOptions { size_t n_syms; size_t n_states; size_t n_arcs; size_t n_final; bool allow_empty; bool acyclic; float weight_multiplier; RandFstOptions() { // Initializes the options randomly. n_syms = 2 + kaldi::Rand() % 5; n_states = 3 + kaldi::Rand() % 10; n_arcs = 5 + kaldi::Rand() % 30; n_final = 1 + kaldi::Rand()%3; allow_empty = true; acyclic = false; weight_multiplier = 0.25; } }; /// Returns a random FST. Useful for randomized algorithm testing. /// Only works if weight can be constructed from float. template<class Arc> VectorFst<Arc>* RandFst(RandFstOptions opts = RandFstOptions() ) { typedef typename Arc::StateId StateId; typedef typename Arc::Weight Weight; VectorFst<Arc> *fst = new VectorFst<Arc>(); start: // Create states. vector<StateId> all_states; for (size_t i = 0;i < (size_t)opts.n_states;i++) { StateId this_state = fst->AddState(); if (i == 0) fst->SetStart(i); all_states.push_back(this_state); } // Set final states. for (size_t j = 0;j < (size_t)opts.n_final;j++) { StateId id = all_states[kaldi::Rand() % opts.n_states]; Weight weight = (Weight)(opts.weight_multiplier*(kaldi::Rand() % 5)); fst->SetFinal(id, weight); } // Create arcs. for (size_t i = 0;i < (size_t)opts.n_arcs;i++) { Arc a; StateId start_state; if(!opts.acyclic) { // no restriction on arcs. start_state = all_states[kaldi::Rand() % opts.n_states]; a.nextstate = all_states[kaldi::Rand() % opts.n_states]; } else { start_state = all_states[kaldi::Rand() % (opts.n_states-1)]; a.nextstate = start_state + 1 + (kaldi::Rand() % (opts.n_states-start_state-1)); } a.ilabel = kaldi::Rand() % opts.n_syms; a.olabel = kaldi::Rand() % opts.n_syms; // same input+output vocab. a.weight = (Weight) (opts.weight_multiplier*(kaldi::Rand() % 4)); fst->AddArc(start_state, a); } // Trim resulting FST. Connect(fst); if (opts.acyclic) assert(fst->Properties(kAcyclic, true) & kAcyclic); if (fst->Start() == kNoStateId && !opts.allow_empty) { goto start; } return fst; } /// Returns a random FST. Useful for randomized algorithm testing. /// Only works if weight can be constructed from a pair of floats template<class Arc> VectorFst<Arc>* RandPairFst(RandFstOptions opts = RandFstOptions() ) { typedef typename Arc::StateId StateId; typedef typename Arc::Weight Weight; VectorFst<Arc> *fst = new VectorFst<Arc>(); start: // Create states. vector<StateId> all_states; for (size_t i = 0;i < (size_t)opts.n_states;i++) { StateId this_state = fst->AddState(); if (i == 0) fst->SetStart(i); all_states.push_back(this_state); } // Set final states. for (size_t j = 0; j < (size_t)opts.n_final;j++) { StateId id = all_states[kaldi::Rand() % opts.n_states]; Weight weight (opts.weight_multiplier*(kaldi::Rand() % 5), opts.weight_multiplier*(kaldi::Rand() % 5)); fst->SetFinal(id, weight); } // Create arcs. for (size_t i = 0;i < (size_t)opts.n_arcs;i++) { Arc a; StateId start_state; if(!opts.acyclic) { // no restriction on arcs. start_state = all_states[kaldi::Rand() % opts.n_states]; a.nextstate = all_states[kaldi::Rand() % opts.n_states]; } else { start_state = all_states[kaldi::Rand() % (opts.n_states-1)]; a.nextstate = start_state + 1 + (kaldi::Rand() % (opts.n_states-start_state-1)); } a.ilabel = kaldi::Rand() % opts.n_syms; a.olabel = kaldi::Rand() % opts.n_syms; // same input+output vocab. a.weight = Weight (opts.weight_multiplier*(kaldi::Rand() % 4), opts.weight_multiplier*(kaldi::Rand() % 4)); fst->AddArc(start_state, a); } // Trim resulting FST. Connect(fst); if (opts.acyclic) assert(fst->Properties(kAcyclic, true) & kAcyclic); if (fst->Start() == kNoStateId && !opts.allow_empty) { goto start; } return fst; } } // end namespace fst. #endif |