Blame view

src/fstext/trivial-factor-weight.h 13.3 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
  // fstext/trivial-factor-weight.h
  
  // Copyright 2009-2011  Microsoft Corporation
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  //
  //
  // This is a modified file from the OpenFST Library v1.2.7 available at
  // http://www.openfst.org and released under the Apache License Version 2.0.
  //
  //
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //     http://www.apache.org/licenses/LICENSE-2.0
  //
  // Unless required by applicable law or agreed to in writing, software
  // distributed under the License is distributed on an "AS IS" BASIS,
  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  // See the License for the specific language governing permissions and
  // limitations under the License.
  //
  // Copyright 2005-2010 Google, Inc.
  // Author: allauzen@google.com (Cyril Allauzen)
  
  
  #ifndef KALDI_FSTEXT_TRIVIAL_FACTOR_WEIGHT_H_
  #define KALDI_FSTEXT_TRIVIAL_FACTOR_WEIGHT_H_
  
  
  // TrivialFactorWeight.h This is an extension to factor-weight.h in the OpenFst
  // code.  It is a version of FactorWeight that creates separate states (with
  // input epsilons) rather than pushing the factors forward.  This is for
  // converting from Gallic FSTs, where you want the result to be a bit more
  // trivial with input epsilons inserted where there are multiple output symbols.
  // This has the advantage that it always works, for any input (also I just
  // prefer this approach).
  
  #include <unordered_map>
  using std::unordered_map;
  
  #include <algorithm>
  #include <string>
  #include <utility>
  #include <vector>
  
  #include <fst/cache.h>
  #include <fst/test-properties.h>
  
  namespace fst {
  
  
  template <class Arc>
  struct TrivialFactorWeightOptions : CacheOptions {
    typedef typename Arc::Label Label;
    float delta;
    Label extra_ilabel;  // input label of extra arcs
    Label extra_olabel;  // output label of extra arcs
  
    TrivialFactorWeightOptions(const CacheOptions &opts, float d,
                        Label il = 0, Label ol = 0)
        : CacheOptions(opts), delta(d), extra_ilabel(il), extra_olabel(ol) {}
  
    explicit TrivialFactorWeightOptions(
        float d, Label il = 0, Label ol = 0)
        : delta(d), extra_ilabel(il), extra_olabel(ol) {}
  
    TrivialFactorWeightOptions(): delta(kDelta), extra_ilabel(0), extra_olabel(0) {}
  
  };
  
  namespace internal {
  
  // Implementation class for TrivialFactorWeight
  template <class A, class F>
  class TrivialFactorWeightFstImpl
      : public CacheImpl<A> {
   public:
    using CacheImpl<A>::PushArc;
    using FstImpl<A>::SetType;
    using FstImpl<A>::SetProperties;
    using FstImpl<A>::Properties;
    using FstImpl<A>::SetInputSymbols;
    using FstImpl<A>::SetOutputSymbols;
  
    using CacheBaseImpl< CacheState<A> >::HasStart;
    using CacheBaseImpl< CacheState<A> >::HasFinal;
    using CacheBaseImpl< CacheState<A> >::HasArcs;
  
    typedef A Arc;
    typedef typename A::Label Label;
    typedef typename A::Weight Weight;
    typedef typename A::StateId StateId;
    typedef F FactorIterator;
  
    typedef DefaultCacheStore<A> Store;
    typedef typename Store::State State;
  
    struct Element {
      Element() {}
  
      Element(StateId s, Weight w) : state(s), weight(w) {}
  
      StateId state;     // Input state Id
      Weight weight;     // Residual weight
    };
  
    TrivialFactorWeightFstImpl(const Fst<A> &fst, const TrivialFactorWeightOptions<A> &opts)
        : CacheImpl<A>(opts),
          fst_(fst.Copy()),
          delta_(opts.delta),
          extra_ilabel_(opts.extra_ilabel),
          extra_olabel_(opts.extra_olabel) {
      SetType("factor-weight");
      uint64 props = fst.Properties(kFstProperties, false);
      SetProperties(FactorWeightProperties(props), kCopyProperties);
  
      SetInputSymbols(fst.InputSymbols());
      SetOutputSymbols(fst.OutputSymbols());
    }
  
    TrivialFactorWeightFstImpl(const TrivialFactorWeightFstImpl<A, F> &impl)
        : CacheImpl<A>(impl),
          fst_(impl.fst_->Copy(true)),
          delta_(impl.delta_),
          extra_ilabel_(impl.extra_ilabel_),
          extra_olabel_(impl.extra_olabel_) {
      SetType("factor-weight");
      SetProperties(impl.Properties(), kCopyProperties);
      SetInputSymbols(impl.InputSymbols());
      SetOutputSymbols(impl.OutputSymbols());
    }
  
    StateId Start() {
      if (!HasStart()) {
        StateId s = fst_->Start();
        if (s == kNoStateId)
          return kNoStateId;
        StateId start = this->FindState(Element(fst_->Start(), Weight::One()));
        this->SetStart(start);
      }
      return CacheImpl<A>::Start();
    }
  
    Weight Final(StateId s) {
      if (!HasFinal(s)) {
        const Element &e = elements_[s];
        Weight w;
        if (e.state == kNoStateId) {  // extra state inserted to represent final weights.
          FactorIterator fit(e.weight);
          if (fit.Done()) {  // cannot be factored.
            w = e.weight;  // so it's final
          } else {
            w = Weight::Zero();  // need another transition.
          }
        } else {
          if (e.weight != Weight::One()) {  // Not a real state.
            w = Weight::Zero();
          } else {  // corresponds to a "real" state.
            w = fst_->Final(e.state);
            FactorIterator fit(w);
            if (!fit.Done()) // we would have intermediate states representing this final state.
              w = Weight::Zero();
          }
        }
        this->SetFinal(s, w);
        return w;
      } else {
        return CacheImpl<A>::Final(s);
      }
    }
  
    size_t NumArcs(StateId s) {
      if (!HasArcs(s))
        Expand(s);
      return CacheImpl<A>::NumArcs(s);
    }
  
    size_t NumInputEpsilons(StateId s) {
      if (!HasArcs(s))
        Expand(s);
      return CacheImpl<A>::NumInputEpsilons(s);
    }
  
    size_t NumOutputEpsilons(StateId s) {
      if (!HasArcs(s))
        Expand(s);
      return CacheImpl<A>::NumOutputEpsilons(s);
    }
  
    void InitArcIterator(StateId s, ArcIteratorData<A> *data) {
      if (!HasArcs(s))
        Expand(s);
      CacheImpl<A>::InitArcIterator(s, data);
    }
  
  
    // Find state corresponding to an element. Create new state
    // if element not found.
    StateId FindState(const Element &e) {
      typename ElementMap::iterator eit = element_map_.find(e);
      if (eit != element_map_.end()) {
        return (*eit).second;
      } else {
        StateId s = elements_.size();
        elements_.push_back(e);
        element_map_.insert(pair<const Element, StateId>(e, s));
        return s;
      }
    }
  
    // Computes the outgoing transitions from a state, creating new destination
    // states as needed.
    void Expand(StateId s) {
      CHECK(static_cast<size_t>(s) < elements_.size());
      Element e = elements_[s];
      if (e.weight != Weight::One()) {
        FactorIterator fit(e.weight);
        if (fit.Done()) {  // Cannot be factored-> create a link to dest state directly
          if (e.state != kNoStateId) {
            StateId dest = FindState(Element(e.state, Weight::One()));
            PushArc(s, Arc(extra_ilabel_, extra_olabel_, e.weight, dest));
          } // else we're done.  This is a final state.
        } else {  // Can be factored.
          const pair<Weight, Weight> &p = fit.Value();
          StateId dest = FindState(Element(e.state, p.second.Quantize(delta_)));
          PushArc(s, Arc(extra_ilabel_, extra_olabel_, p.first, dest));
        }
      } else {  // Unit weight.  This corresponds to a "real" state.
        CHECK(e.state != kNoStateId);
        for (ArcIterator< Fst<A> > ait(*fst_, e.state);
             !ait.Done();
             ait.Next()) {
          const A &arc = ait.Value();
          FactorIterator fit(arc.weight);
          if (fit.Done()) {  // cannot be factored->just link directly to dest.
            StateId dest = FindState(Element(arc.nextstate, Weight::One()));
            PushArc(s, Arc(arc.ilabel, arc.olabel, arc.weight, dest));
          } else {
            const pair<Weight, Weight> &p = fit.Value();
            StateId dest = FindState(Element(arc.nextstate, p.second.Quantize(delta_)));
            PushArc(s, Arc(arc.ilabel, arc.olabel, p.first, dest));
          }
        }
        // See if we have to add arcs for final-states [only if final-weight is factorable].
        Weight final_w = fst_->Final(e.state);
        if (final_w != Weight::Zero()) {
          FactorIterator fit(final_w);
          if (!fit.Done()) {
            const pair<Weight, Weight> &p = fit.Value();
            StateId dest = FindState(Element(kNoStateId, p.second.Quantize(delta_)));
            PushArc(s, Arc(extra_ilabel_, extra_olabel_, p.first, dest));
          }
        }
      }
      this->SetArcs(s);
    }
  
   private:
    // Equality function for Elements, assume weights have been quantized.
    class ElementEqual {
     public:
      bool operator()(const Element &x, const Element &y) const {
        return x.state == y.state && x.weight == y.weight;
      }
    };
  
    // Hash function for Elements to Fst states.
    class ElementKey {
     public:
      size_t operator()(const Element &x) const {
        return static_cast<size_t>(x.state * kPrime + x.weight.Hash());
      }
     private:
      static const int kPrime = 7853;
    };
  
    typedef unordered_map<Element, StateId, ElementKey, ElementEqual> ElementMap;
  
    std::unique_ptr<const Fst<A>> fst_;
    float delta_;
    uint32 mode_;               // factoring arc and/or final weights
    Label extra_ilabel_;        // ilabel of arc created when factoring final w's
    Label extra_olabel_;        // olabel of arc created when factoring final w's
    vector<Element> elements_;  // mapping Fst state to Elements
    ElementMap element_map_;    // mapping Elements to Fst state
  
  };
  
  }  // namespace internal
  
  /// TrivialFactorWeightFst takes as template parameter a FactorIterator as
  /// defined above. The result of weight factoring is a transducer
  /// equivalent to the input whose path weights have been factored
  /// according to the FactorIterator. States and transitions will be
  /// added as necessary.
  /// This algorithm differs from the one implemented in FactorWeightFst
  /// in that it does not attempt to push the extra weight forward to the
  /// next state: it uses a sequence of "extra" intermediate state, and
  /// outputs the remaining weight right away.  This ensures that it will
  /// always succeed, even for Gallic representations of FSTs that have cycles
  /// with more output than input symbols.
  
  /// Note that the code below was modified from factor-weight.h by just
  /// search-and-replacing "FactorWeight" by "TrivialFactorWeight".
  
  
  template <class A, class F>
  class TrivialFactorWeightFst :
      public ImplToFst<internal::TrivialFactorWeightFstImpl<A, F>> {
   public:
    friend class ArcIterator< TrivialFactorWeightFst<A, F> >;
    friend class StateIterator< TrivialFactorWeightFst<A, F> >;
  
    typedef A Arc;
    typedef typename A::Weight Weight;
    typedef typename A::StateId StateId;
    typedef DefaultCacheStore<Arc> Store;
    typedef typename Store::State State;
    typedef internal::TrivialFactorWeightFstImpl<A, F> Impl;
  
    explicit TrivialFactorWeightFst(const Fst<A> &fst)
        : ImplToFst<Impl>(std::make_shared<Impl>(fst, TrivialFactorWeightOptions<A>())) {}
  
    TrivialFactorWeightFst(const Fst<A> &fst,  const TrivialFactorWeightOptions<A> &opts)
        : ImplToFst<Impl>(std::make_shared<Impl>(fst, opts)) {}
  
    // See Fst<>::Copy() for doc.
    TrivialFactorWeightFst(const TrivialFactorWeightFst<A, F> &fst, bool copy)
        : ImplToFst<Impl>(fst, copy) {}
  
    // Get a copy of this TrivialFactorWeightFst. See Fst<>::Copy() for further doc.
    TrivialFactorWeightFst<A, F> *Copy(bool copy = false) const override {
      return new TrivialFactorWeightFst<A, F>(*this, copy);
    }
  
    inline void InitStateIterator(StateIteratorData<A> *data) const override;
  
    void InitArcIterator(StateId s, ArcIteratorData<A> *data) const override {
      GetMutableImpl()->InitArcIterator(s, data);
    }
  
   private:
    using ImplToFst<Impl>::GetImpl;
    using ImplToFst<Impl>::GetMutableImpl;
  
    TrivialFactorWeightFst &operator=(const TrivialFactorWeightFst &fst) = delete;
  };
  
  
  // Specialization for TrivialFactorWeightFst.
  template<class A, class F>
  class StateIterator< TrivialFactorWeightFst<A, F> >
      : public CacheStateIterator< TrivialFactorWeightFst<A, F> > {
   public:
    explicit StateIterator(const TrivialFactorWeightFst<A, F> &fst)
        : CacheStateIterator< TrivialFactorWeightFst<A, F> >(fst, fst.GetMutableImpl()) {}
  };
  
  
  // Specialization for TrivialFactorWeightFst.
  template <class A, class F>
  class ArcIterator< TrivialFactorWeightFst<A, F> >
      : public CacheArcIterator< TrivialFactorWeightFst<A, F> > {
   public:
    typedef typename A::StateId StateId;
  
    ArcIterator(const TrivialFactorWeightFst<A, F> &fst, StateId s)
        : CacheArcIterator< TrivialFactorWeightFst<A, F>>(fst.GetMutableImpl(), s) {
      if (!fst.GetImpl()->HasArcs(s)) fst.GetMutableImpl()->Expand(s);
    }
  };
  
  template <class A, class F>
  inline void TrivialFactorWeightFst<A, F>::InitStateIterator(
      StateIteratorData<A> *data) const {
    data->base = new StateIterator< TrivialFactorWeightFst<A, F> >(*this);
  }
  
  
  
  
  }  // namespace fst
  
  #endif