Blame view
src/gmm/am-diag-gmm.h
8.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
// gmm/am-diag-gmm.h // Copyright 2009-2012 Saarland University (Author: Arnab Ghoshal) // Johns Hopkins University (Author: Daniel Povey) // Karel Vesely // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_GMM_AM_DIAG_GMM_H_ #define KALDI_GMM_AM_DIAG_GMM_H_ 1 #include <vector> #include "base/kaldi-common.h" #include "gmm/diag-gmm.h" #include "itf/options-itf.h" namespace kaldi { /// @defgroup DiagGmm DiagGmm /// @{ /// kaldi Diagonal Gaussian Mixture Models class AmDiagGmm { public: AmDiagGmm() {} ~AmDiagGmm(); /// Initializes with a single "prototype" GMM. void Init(const DiagGmm &proto, int32 num_pdfs); /// Adds a GMM to the model, and increments the total number of PDFs. void AddPdf(const DiagGmm &gmm); /// Copies the parameters from another model. Allocates necessary memory. void CopyFromAmDiagGmm(const AmDiagGmm &other); void SplitPdf(int32 idx, int32 target_components, float perturb_factor); // In SplitByCount we use the "target_components" and "power" // to work out targets for each state (according to power-of-occupancy rule), // and any state less than its target gets mixed up. If some states // were over their target, this may take the #Gauss over the target. // we enforce a min-count on Gaussians while splitting (don't split // if it would take it below min-count). void SplitByCount(const Vector<BaseFloat> &state_occs, int32 target_components, float perturb_factor, BaseFloat power, BaseFloat min_count); // In SplitByCount we use the "target_components" and "power" // to work out targets for each state (according to power-of-occupancy rule), // and any state over its target gets mixed down. If some states // were under their target, this may take the #Gauss below the target. void MergeByCount(const Vector<BaseFloat> &state_occs, int32 target_components, BaseFloat power, BaseFloat min_count); /// Sets the gconsts for all the PDFs. Returns the total number of Gaussians /// over all PDFs that are "invalid" e.g. due to zero weights or variances. int32 ComputeGconsts(); BaseFloat LogLikelihood(const int32 pdf_index, const VectorBase<BaseFloat> &data) const; void Read(std::istream &in_stream, bool binary); void Write(std::ostream &out_stream, bool binary) const; int32 Dim() const { return (densities_.size() > 0)? densities_[0]->Dim() : 0; } int32 NumPdfs() const { return densities_.size(); } int32 NumGauss() const; int32 NumGaussInPdf(int32 pdf_index) const; /// Accessors DiagGmm& GetPdf(int32 pdf_index); const DiagGmm& GetPdf(int32 pdf_index) const; void GetGaussianMean(int32 pdf_index, int32 gauss, VectorBase<BaseFloat> *out) const; void GetGaussianVariance(int32 pdf_index, int32 gauss, VectorBase<BaseFloat> *out) const; /// Mutators void SetGaussianMean(int32 pdf_index, int32 gauss_index, const VectorBase<BaseFloat> &in); private: std::vector<DiagGmm*> densities_; // int32 dim_; void RemovePdf(int32 pdf_index); KALDI_DISALLOW_COPY_AND_ASSIGN(AmDiagGmm); }; inline BaseFloat AmDiagGmm::LogLikelihood( const int32 pdf_index, const VectorBase<BaseFloat> &data) const { return densities_[pdf_index]->LogLikelihood(data); } inline int32 AmDiagGmm::NumGaussInPdf(int32 pdf_index) const { KALDI_ASSERT((static_cast<size_t>(pdf_index) < densities_.size()) && (densities_[pdf_index] != NULL)); return densities_[pdf_index]->NumGauss(); } inline DiagGmm& AmDiagGmm::GetPdf(int32 pdf_index) { KALDI_ASSERT((static_cast<size_t>(pdf_index) < densities_.size()) && (densities_[pdf_index] != NULL)); return *(densities_[pdf_index]); } inline const DiagGmm& AmDiagGmm::GetPdf(int32 pdf_index) const { KALDI_ASSERT((static_cast<size_t>(pdf_index) < densities_.size()) && (densities_[pdf_index] != NULL)); return *(densities_[pdf_index]); } inline void AmDiagGmm::GetGaussianMean(int32 pdf_index, int32 gauss, VectorBase<BaseFloat> *out) const { KALDI_ASSERT((static_cast<size_t>(pdf_index) < densities_.size()) && (densities_[pdf_index] != NULL)); densities_[pdf_index]->GetComponentMean(gauss, out); } inline void AmDiagGmm::GetGaussianVariance(int32 pdf_index, int32 gauss, VectorBase<BaseFloat> *out) const { KALDI_ASSERT((static_cast<size_t>(pdf_index) < densities_.size()) && (densities_[pdf_index] != NULL)); densities_[pdf_index]->GetComponentVariance(gauss, out); } inline void AmDiagGmm::SetGaussianMean(int32 pdf_index, int32 gauss_index, const VectorBase<BaseFloat> &in) { KALDI_ASSERT((static_cast<size_t>(pdf_index) < densities_.size()) && (densities_[pdf_index] != NULL)); densities_[pdf_index]->SetComponentMean(gauss_index, in); } inline void AmDiagGmm::SplitPdf(int32 pdf_index, int32 target_components, float perturb_factor) { KALDI_ASSERT((static_cast<size_t>(pdf_index) < densities_.size()) && (densities_[pdf_index] != NULL)); densities_[pdf_index]->Split(target_components, perturb_factor); } struct UbmClusteringOptions { int32 ubm_num_gauss; BaseFloat reduce_state_factor; int32 intermediate_num_gauss; BaseFloat cluster_varfloor; int32 max_am_gauss; UbmClusteringOptions() : ubm_num_gauss(400), reduce_state_factor(0.2), intermediate_num_gauss(4000), cluster_varfloor(0.01), max_am_gauss(20000) {} UbmClusteringOptions(int32 ncomp, BaseFloat red, int32 interm_gauss, BaseFloat vfloor, int32 max_am_gauss) : ubm_num_gauss(ncomp), reduce_state_factor(red), intermediate_num_gauss(interm_gauss), cluster_varfloor(vfloor), max_am_gauss(max_am_gauss) {} void Register(OptionsItf *opts) { std::string module = "UbmClusteringOptions: "; opts->Register("max-am-gauss", &max_am_gauss, module+ "We first reduce acoustic model to this max #Gauss before clustering."); opts->Register("ubm-num-gauss", &ubm_num_gauss, module+ "Number of Gaussians components in the final UBM."); opts->Register("ubm-numcomps", &ubm_num_gauss, module+ "Backward compatibility option (see ubm-num-gauss)"); opts->Register("reduce-state-factor", &reduce_state_factor, module+ "Intermediate number of clustered states (as fraction of total states)."); opts->Register("intermediate-num-gauss", &intermediate_num_gauss, module+ "Intermediate number of merged Gaussian components."); opts->Register("intermediate-numcomps", &intermediate_num_gauss, module+ "Backward compatibility option (see intermediate-num-gauss)"); opts->Register("cluster-varfloor", &cluster_varfloor, module+ "Variance floor used in bottom-up state clustering."); } void Check(); }; /** Clusters the Gaussians in an acoustic model to a single GMM with specified * number of components. First the each state is mixed-down to a single * Gaussian, then the states are clustered by clustering these Gaussians in a * bottom-up fashion. Number of clusters is determined by reduce_state_factor. * The Gaussians for each cluster of states are then merged based on the least * likelihood reduction till there are intermediate_numcomp Gaussians, which * are then merged into ubm_num_gauss Gaussians. * This is the UBM initialization algorithm described in section 2.1 of Povey, * et al., "The subspace Gaussian mixture model - A structured model for speech * recognition", In Computer Speech and Language, April 2011. */ void ClusterGaussiansToUbm(const AmDiagGmm &am, const Vector<BaseFloat> &state_occs, UbmClusteringOptions opts, DiagGmm *ubm_out); } // namespace kaldi /// @} DiagGmm #endif // KALDI_GMM_AM_DIAG_GMM_H_ |