Blame view
src/gmm/diag-gmm-test.cc
9.6 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
// gmm/diag-gmm-test.cc // Copyright 2009-2011 Microsoft Corporation; Georg Stemmer; Jan Silovsky; // Saarland University // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "gmm/diag-gmm.h" #include "gmm/mle-diag-gmm.h" #include "util/kaldi-io.h" namespace kaldi { void InitRandomGmm(DiagGmm *gmm_in) { int32 num_gauss = 10 + Rand() % 5; int32 dim = 10 + Rand() % 10; DiagGmm &gmm(*gmm_in); gmm.Resize(num_gauss, dim); Matrix<BaseFloat> inv_vars(num_gauss, dim), means(num_gauss, dim); Vector<BaseFloat> weights(num_gauss); for (int32 i = 0; i < num_gauss; i++) { for (int32 j = 0; j < dim; j++) { inv_vars(i, j) = Exp(RandGauss() * (1.0 / (1 + j))); means(i, j) = RandGauss() * (1.0 / (1 + j)); } weights(i) = Exp(RandGauss()); } weights.Scale(1.0 / weights.Sum()); gmm.SetWeights(weights); gmm.SetInvVarsAndMeans(inv_vars, means); gmm.Perturb(0.5 * RandUniform()); gmm.ComputeGconsts(); // this is unnecessary; computed in Perturb } // This tests the Generate function and also the HMM-update. // it relies on some statistical ideas related to the Aikake // criterion. void UnitTestDiagGmmGenerate() { DiagGmm gmm; InitRandomGmm(&gmm); int32 dim = gmm.Dim(); int32 npoints = 100 * gmm.NumGauss(); Matrix<BaseFloat> rand_points(npoints, dim); for (int32 i = 0; i < npoints; i++) { SubVector<BaseFloat> row(rand_points, i); gmm.Generate(&row); } int32 niters = 15; BaseFloat objf_change_tot = 0.0, objf_change, count; for (int32 j = 0; j < niters; j++) { MleDiagGmmOptions opts; AccumDiagGmm stats(gmm, kGmmAll); // all update flags. for (int32 i = 0; i < npoints; i++) { SubVector<BaseFloat> row(rand_points, i); stats.AccumulateFromDiag(gmm, row, 1.0); } MleDiagGmmUpdate(opts, stats, kGmmAll, &gmm, &objf_change, &count); objf_change_tot += objf_change; } AssertEqual(count, npoints, 1e-6); int32 num_params = gmm.NumGauss() * (gmm.Dim()*2 + 1); BaseFloat expected_objf_change = 0.5 * num_params; KALDI_LOG << "Expected objf change is: not much more than " << expected_objf_change <<", seen: " << objf_change_tot; KALDI_ASSERT(objf_change_tot < 2.0 * expected_objf_change); // way too much. // This test relies on statistical laws and if it fails it does not // *necessarily* mean that something is wrong. } void UnitTestDiagGmm() { // random dimension of the gmm size_t dim = 1 + kaldi::RandInt(0, 5); // random number of mixtures size_t nMix = 1 + kaldi::RandInt(0, 5); std::cout << "Testing NumGauss: " << nMix << ", " << "Dim: " << dim << ' '; // generate random feature vector and // random mean and variance vectors Vector<BaseFloat> feat(dim), weights(nMix), loglikes(nMix); Matrix<BaseFloat> means(nMix, dim), vars(nMix, dim), invvars(nMix, dim); float loglike = 0.0; for (size_t d = 0; d < dim; d++) { feat(d) = kaldi::RandGauss(); } float tot_weight = 0.0; for (size_t m = 0; m < nMix; m++) { weights(m) = kaldi::RandUniform(); for (size_t d= 0; d < dim; d++) { means(m, d) = kaldi::RandGauss(); vars(m, d) = Exp(kaldi::RandGauss()) + 1e-5; } tot_weight += weights(m); } // normalize weights for (size_t m = 0; m < nMix; m++) { weights(m) /= tot_weight; for (size_t d= 0; d < dim; d++) { loglikes(m) += -0.5 * (M_LOG_2PI + Log(vars(m, d)) + (feat(d) - means(m, d)) * (feat(d) - means(m, d)) / vars(m, d)); } loglikes(m) += Log(weights(m)); } loglike = loglikes.LogSumExp(); // new GMM DiagGmm *gmm = new DiagGmm(); gmm->Resize(nMix, dim); invvars.CopyFromMat(vars); invvars.InvertElements(); gmm->SetWeights(weights); gmm->SetInvVarsAndMeans(invvars, means); gmm->ComputeGconsts(); Vector<BaseFloat> posterior1(nMix); float loglike1 = gmm->ComponentPosteriors(feat, &posterior1); std::cout << "LogLike: " << loglike << ' '; std::cout << "LogLike1: " << loglike1 << ' '; AssertEqual(loglike, loglike1, 0.01); AssertEqual(1.0, posterior1.Sum(), 0.01); { // Test various accessors / mutators Vector<BaseFloat> weights_bak(nMix); Matrix<BaseFloat> means_bak(nMix, dim); Matrix<BaseFloat> invvars_bak(nMix, dim); weights_bak.CopyFromVec(gmm->weights()); gmm->GetMeans(&means_bak); gmm->GetVars(&invvars_bak); // get vars invvars_bak.InvertElements(); // compute invvars // set all params one-by-one to new model DiagGmm gmm2; gmm2.Resize(gmm->NumGauss(), gmm->Dim()); gmm2.SetWeights(weights_bak); gmm2.SetMeans(means_bak); gmm2.SetInvVars(invvars_bak); gmm2.ComputeGconsts(); BaseFloat loglike_gmm2 = gmm2.LogLikelihood(feat); AssertEqual(loglike1, loglike_gmm2); { Vector<BaseFloat> loglikes; gmm2.LogLikelihoods(feat, &loglikes); AssertEqual(loglikes.LogSumExp(), loglike_gmm2); } { std::vector<int32> indices; for (int32 i = 0; i < gmm2.NumGauss(); i++) indices.push_back(i); Vector<BaseFloat> loglikes; gmm2.LogLikelihoodsPreselect(feat, indices, &loglikes); AssertEqual(loglikes.LogSumExp(), loglike_gmm2); } // single component mean accessor + mutator DiagGmm gmm3; gmm3.Resize(gmm->NumGauss(), gmm->Dim()); gmm3.SetWeights(weights_bak); means_bak.SetZero(); for (size_t i = 0; i < nMix; i++) { SubVector<BaseFloat> row(means_bak, i); gmm->GetComponentMean(i, &row); gmm3.SetComponentMean(i, row); } gmm3.SetInvVars(invvars_bak); gmm3.ComputeGconsts(); BaseFloat loglike_gmm3 = gmm3.LogLikelihood(feat); AssertEqual(loglike1, loglike_gmm3, 0.01); } // Test various accessors / mutators end // First, non-binary write. gmm->Write(Output("tmpf", false).Stream(), false); delete gmm; { bool binary_in; DiagGmm *gmm2 = new DiagGmm(); Input ki("tmpf", &binary_in); gmm2->Read(ki.Stream(), binary_in); float loglike4 = gmm2->ComponentPosteriors(feat, &posterior1); AssertEqual(loglike, loglike4, 0.01); // binary write gmm2->Write(Output("tmpfb", true).Stream(), true); delete gmm2; // binary read DiagGmm *gmm3; gmm3 = new DiagGmm(); Input ki2("tmpfb", &binary_in); gmm3->Read(ki2.Stream(), binary_in); float loglike5 = gmm3->ComponentPosteriors(feat, &posterior1); AssertEqual(loglike, loglike5, 0.01); delete gmm3; } { // split and merge test for 1 component GMM (doesn't test the merge crit.) DiagGmm gmm1; Vector<BaseFloat> weights1(1); Matrix<BaseFloat> means1(1, dim), vars1(1, dim), invvars1(1, dim); weights1(0) = 1.0; means1.CopyFromMat(means.Range(0, 1, 0, dim)); vars1.CopyFromMat(vars.Range(0, 1, 0, dim)); invvars1.CopyFromMat(vars1); invvars1.InvertElements(); gmm1.Resize(1, dim); gmm1.SetWeights(weights1); gmm1.SetInvVarsAndMeans(invvars1, means1); gmm1.ComputeGconsts(); DiagGmm gmm2; gmm2.CopyFromDiagGmm(gmm1); gmm2.Split(2, 0.001); gmm2.Merge(1); float loglike1 = gmm1.LogLikelihood(feat); float loglike2 = gmm2.LogLikelihood(feat); AssertEqual(loglike1, loglike2, 0.01); } { // split and merge test for 1 component GMM, this time using K-means algorithm. DiagGmm gmm1; Vector<BaseFloat> weights1(1); Matrix<BaseFloat> means1(1, dim), vars1(1, dim), invvars1(1, dim); weights1(0) = 1.0; means1.CopyFromMat(means.Range(0, 1, 0, dim)); vars1.CopyFromMat(vars.Range(0, 1, 0, dim)); invvars1.CopyFromMat(vars1); invvars1.InvertElements(); gmm1.Resize(1, dim); gmm1.SetWeights(weights1); gmm1.SetInvVarsAndMeans(invvars1, means1); gmm1.ComputeGconsts(); DiagGmm gmm2; gmm2.CopyFromDiagGmm(gmm1); gmm2.Split(2, 0.001); gmm2.MergeKmeans(1); float loglike1 = gmm1.LogLikelihood(feat); float loglike2 = gmm2.LogLikelihood(feat); AssertEqual(loglike1, loglike2, 0.01); } { // Duplicate Gaussians using initializer that takes a vector, and // check like is unchanged. DiagGmm gmm1; Vector<BaseFloat> weights1(1); Matrix<BaseFloat> means1(1, dim), vars1(1, dim), invvars1(1, dim); weights1(0) = 1.0; means1.CopyFromMat(means.Range(0, 1, 0, dim)); vars1.CopyFromMat(vars.Range(0, 1, 0, dim)); invvars1.CopyFromMat(vars1); invvars1.InvertElements(); gmm1.Resize(1, dim); gmm1.SetWeights(weights1); gmm1.SetInvVarsAndMeans(invvars1, means1); gmm1.ComputeGconsts(); std::vector<std::pair<BaseFloat, const DiagGmm*> > vec; vec.push_back(std::make_pair(static_cast<BaseFloat>(0.4), (const DiagGmm*)(&gmm1))); vec.push_back(std::make_pair(static_cast<BaseFloat>(0.6), (const DiagGmm*)(&gmm1))); DiagGmm gmm2(vec); float loglike1 = gmm1.LogLikelihood(feat); float loglike2 = gmm2.LogLikelihood(feat); AssertEqual(loglike1, loglike2, 0.01); } unlink("tmpf"); unlink("tmpfb"); } } // end namespace kaldi int main() { // repeat the test ten times for (int i = 0; i < 2; i++) { kaldi::UnitTestDiagGmm(); kaldi::UnitTestDiagGmmGenerate(); } std::cout << "Test OK. "; } |