Blame view
src/gmm/ebw-diag-gmm-test.cc
7.26 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
// gmm/ebw-diag-gmm-test.cc // Copyright 2009-2011 Petr Motlicek // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <cmath> #include "gmm/diag-gmm.h" #include "gmm/ebw-diag-gmm.h" #include "util/kaldi-io.h" namespace kaldi { void UnitTestEstimateMmieDiagGmm() { size_t dim = RandInt(5, 10); // dimension of the gmm size_t nMix = 2; // number of mixtures in the data size_t maxiterations = RandInt(2, 5); // number of iterations for estimation // maximum number of densities in the GMM // larger than the number of mixtures in the data // so that we can test the removal of unseen components int32 maxcomponents = 10; // generate random feature vectors Matrix<BaseFloat> means_f(nMix, dim), vars_f(nMix, dim); // first, generate random mean and variance vectors for (size_t m = 0; m < nMix; m++) { for (size_t d= 0; d < dim; d++) { means_f(m, d) = kaldi::RandGauss()*100.0F; vars_f(m, d) = Exp(kaldi::RandGauss())*1000.0F+ 1.0F; } // std::cout << "Gauss " << m << ": Mean = " << means_f.Row(m) << ' ' // << "Vars = " << vars_f.Row(m) << ' '; } // Numerator stats // second, generate 1000 feature vectors for each of the mixture components size_t counter_num = 0, multiple = 200; Matrix<BaseFloat> feats_num(nMix*multiple, dim); for (size_t m = 0; m < nMix; m++) { for (size_t i = 0; i < multiple; i++) { for (size_t d = 0; d < dim; d++) { feats_num(counter_num, d) = means_f(m, d) + kaldi::RandGauss() * std::sqrt(vars_f(m, d)); } counter_num++; } } // Denominator stats // second, generate 1000 feature vectors for each of the mixture components size_t counter_den = 0; Matrix<BaseFloat> feats_den(nMix*multiple, dim); for (size_t m = 0; m < nMix; m++) { for (size_t i = 0; i < multiple; i++) { for (size_t d = 0; d < dim; d++) { feats_den(counter_den, d) = means_f(m, d) + kaldi::RandGauss() * std::sqrt(vars_f(m, d)); } counter_den++; } } // Compute the global mean and variance Vector<BaseFloat> mean_acc(dim); Vector<BaseFloat> var_acc(dim); Vector<BaseFloat> featvec(dim); for (size_t i = 0; i < counter_num; i++) { featvec.CopyRowFromMat(feats_num, i); mean_acc.AddVec(1.0, featvec); featvec.ApplyPow(2.0); var_acc.AddVec(1.0, featvec); } mean_acc.Scale(1.0F/counter_num); var_acc.Scale(1.0F/counter_num); var_acc.AddVec2(-1.0, mean_acc); // std::cout << "Mean acc = " << mean_acc << ' ' << "Var acc = " // << var_acc << ' '; // write the feature vectors to a file std::ofstream of("tmpfeats"); of.precision(10); of << feats_num; of.close(); // now generate randomly initial values for the GMM Vector<BaseFloat> weights(1); Matrix<BaseFloat> means(1, dim), vars(1, dim), invvars(1, dim); for (size_t d= 0; d < dim; d++) { means(0, d) = kaldi::RandGauss()*100.0F; vars(0, d) = Exp(kaldi::RandGauss()) *10.0F + 1e-5F; } weights(0) = 1.0F; invvars.CopyFromMat(vars); invvars.InvertElements(); // new GMM DiagGmm *gmm = new DiagGmm(); gmm->Resize(1, dim); gmm->SetWeights(weights); gmm->SetInvVarsAndMeans(invvars, means); gmm->ComputeGconsts(); EbwOptions ebw_opts; EbwWeightOptions ebw_weight_opts; int r = Rand() % 16; GmmFlagsType flags = (r%2 == 0 ? kGmmMeans : 0) + ((r/2)%2 == 0 ? kGmmVariances : 0) + ((r/4)%2 == 0 ? kGmmWeights : 0); double tau = (r/8)%2 == 0 ? 100 : 0.0; if ((flags & kGmmVariances) && !(flags & kGmmMeans)) { delete gmm; return; // Don't do this case: not supported in the update equations. } AccumDiagGmm num; AccumDiagGmm den; num.Resize(gmm->NumGauss(), gmm->Dim(), flags); num.SetZero(flags); den.Resize(gmm->NumGauss(), gmm->Dim(), flags); den.SetZero(flags); size_t iteration = 0; double last_log_like_diff = NAN; while (iteration < maxiterations) { Vector<BaseFloat> featvec_num(dim); Vector<BaseFloat> featvec_den(dim); num.Resize(gmm->NumGauss(), gmm->Dim(), flags); num.SetZero(flags); den.Resize(gmm->NumGauss(), gmm->Dim(), flags); den.SetZero(flags); double loglike_num = 0.0; double loglike_den = 0.0; for (size_t i = 0; i < counter_num; i++) { featvec_num.CopyRowFromMat(feats_num, i); loglike_num += static_cast<double>(num.AccumulateFromDiag(*gmm, featvec_num, 1.0F)); // std::cout << "Mean accum_num: " << num.mean_accumulator() << ' '; } for (size_t i = 0; i < counter_den; i++) { featvec_den.CopyRowFromMat(feats_den, i); loglike_den += static_cast<double>(den.AccumulateFromDiag(*gmm, featvec_den, 1.0F)); // std::cout << "Mean accum_den: " << den.mean_accumulator() << ' '; } std::cout << "Loglikelihood Num before iteration " << iteration << " : " << std::scientific << loglike_num << " number of components: " << gmm->NumGauss() << ' '; std::cout << "Loglikelihood Den before iteration " << iteration << " : " << std::scientific << loglike_den << " number of components: " << gmm->NumGauss() << ' '; double loglike_diff = loglike_num - loglike_den; if (iteration > 0) { KALDI_LOG << "Objective changed " << last_log_like_diff << " to " << loglike_diff; if (loglike_diff < last_log_like_diff) KALDI_WARN << "Objective decreased (flags = " << GmmFlagsToString(flags) << ", tau = " << tau << " )"; } last_log_like_diff = loglike_diff; AccumDiagGmm num_smoothed(num); IsmoothStatsDiagGmm(num, tau, &num_smoothed); // Apply I-smoothing. BaseFloat auxf_gauss, auxf_weight, count; std::cout << "MEANX: " << gmm->weights() << ' '; int32 num_floored; UpdateEbwDiagGmm(num_smoothed, den, flags, ebw_opts, gmm, &auxf_gauss, &count, &num_floored); if (flags & kGmmWeights) { UpdateEbwWeightsDiagGmm(num, den, ebw_weight_opts, gmm, &auxf_weight, &count); } // mean_hlp.CopyFromVec(gmm->means_invvars().Row(0)); // std::cout << "MEANY: " << mean_hlp << ' '; std::cout << "MEANY: " << gmm->weights() << ' '; if ((iteration % 3 == 1) && (gmm->NumGauss() * 2 <= maxcomponents)) { gmm->Split(gmm->NumGauss() * 2, 0.001); std::cout << "Ngauss, Ndim: " << gmm->NumGauss() << " " << gmm->Dim() << ' '; } iteration++; } delete gmm; unlink("tmpfeats"); } } // end namespace kaldi int main() { for (int i = 0; i < 5; i++) { kaldi::UnitTestEstimateMmieDiagGmm(); } std::cout << "Test OK. "; } |