Blame view
src/gmm/ebw-diag-gmm.cc
14.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
// gmm/ebw-diag-gmm.cc // Copyright 2009-2011 Arnab Ghoshal, Petr Motlicek // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <algorithm> // for std::max #include <string> #include <vector> #include "gmm/diag-gmm.h" #include "gmm/ebw-diag-gmm.h" namespace kaldi { // This function is used inside the EBW update routines. // returns true if all variances were positive. static bool EBWUpdateGaussian( BaseFloat D, GmmFlagsType flags, const VectorBase<double> &orig_mean, const VectorBase<double> &orig_var, const VectorBase<double> &x_stats, const VectorBase<double> &x2_stats, double occ, VectorBase<double> *mean, VectorBase<double> *var, double *auxf_impr) { if (! (flags&(kGmmMeans|kGmmVariances))) { // nothing to do. if (auxf_impr) *auxf_impr = 0.0; mean->CopyFromVec(orig_mean); var->CopyFromVec(orig_var); return true; } KALDI_ASSERT(!( (flags&kGmmVariances) && !(flags&kGmmMeans)) && "We didn't make the update cover this case sensibly (update vars not means)"); mean->SetZero(); var->SetZero(); mean->AddVec(D, orig_mean); var->AddVec2(D, orig_mean); var->AddVec(D, orig_var); mean->AddVec(1.0, x_stats); var->AddVec(1.0, x2_stats); BaseFloat scale = 1.0 / (occ + D); mean->Scale(scale); var->Scale(scale); var->AddVec2(-1.0, *mean); if (!(flags&kGmmVariances)) var->CopyFromVec(orig_var); if (!(flags&kGmmMeans)) mean->CopyFromVec(orig_mean); // Return false if any NaN's. for (int32 i = 0; i < mean->Dim(); i++) { double m = ((*mean)(i)), v = ((*var)(i)); if (m!=m || v!=v || m-m != 0 || v-v != 0) { return false; } } if (var->Min() > 0.0) { if (auxf_impr != NULL) { // work out auxf improvement. BaseFloat old_auxf = 0.0, new_auxf = 0.0; int32 dim = orig_mean.Dim(); for (int32 i = 0; i < dim; i++) { BaseFloat mean_diff = (*mean)(i) - orig_mean(i); old_auxf += (occ+D) * -0.5 * (Log(orig_var(i)) + ((*var)(i) + mean_diff*mean_diff) / orig_var(i)); new_auxf += (occ+D) * -0.5 * (Log((*var)(i)) + 1.0); } *auxf_impr = new_auxf - old_auxf; } return true; } else return false; } // Update Gaussian parameters only (no weights) void UpdateEbwDiagGmm(const AccumDiagGmm &num_stats, // with I-smoothing, if used. const AccumDiagGmm &den_stats, GmmFlagsType flags, const EbwOptions &opts, DiagGmm *gmm, BaseFloat *auxf_change_out, BaseFloat *count_out, int32 *num_floored_out) { GmmFlagsType acc_flags = num_stats.Flags(); if (flags & ~acc_flags) KALDI_ERR << "Incompatible flags: you requested to update flags \"" << GmmFlagsToString(flags) << "\" but accumulators have only \"" << GmmFlagsToString(acc_flags) << '"'; // It could be that the num stats actually contain the difference between // num and den (for mean and var stats), and den stats only have the weights. bool den_has_stats; if (den_stats.Flags() != acc_flags) { den_has_stats = false; if (den_stats.Flags() != kGmmWeights) KALDI_ERR << "Incompatible flags: num stats have flags \"" << GmmFlagsToString(acc_flags) << "\" vs. den stats \"" << GmmFlagsToString(den_stats.Flags()) << '"'; } else { den_has_stats = true; } int32 num_comp = num_stats.NumGauss(); int32 dim = num_stats.Dim(); KALDI_ASSERT(num_stats.NumGauss() == den_stats.NumGauss()); KALDI_ASSERT(num_stats.Dim() == gmm->Dim()); KALDI_ASSERT(gmm->NumGauss() == num_comp); if ( !(flags & (kGmmMeans | kGmmVariances)) ) { return; // Nothing to update. } // copy DiagGMM model and transform this to the normal case DiagGmmNormal diaggmmnormal; gmm->ComputeGconsts(); diaggmmnormal.CopyFromDiagGmm(*gmm); // go over all components Vector<double> mean(dim), var(dim), mean_stats(dim), var_stats(dim); for (int32 g = 0; g < num_comp; g++) { BaseFloat num_count = num_stats.occupancy()(g), den_count = den_stats.occupancy()(g); if (num_count == 0.0 && den_count == 0.0) { KALDI_VLOG(2) << "Not updating Gaussian " << g << " since counts are zero"; continue; } mean_stats.CopyFromVec(num_stats.mean_accumulator().Row(g)); if (den_has_stats) mean_stats.AddVec(-1.0, den_stats.mean_accumulator().Row(g)); if (flags & kGmmVariances) { var_stats.CopyFromVec(num_stats.variance_accumulator().Row(g)); if (den_has_stats) var_stats.AddVec(-1.0, den_stats.variance_accumulator().Row(g)); } double D = (opts.tau + opts.E * den_count) / 2; if (D+num_count-den_count <= 0.0) { // ensure +ve-- can be problem if num count == 0 and E=2. D = -1.0001*(num_count-den_count) + 1.0e-10; KALDI_ASSERT(D+num_count-den_count > 0.0); } // We initialize to half the value of D that would be dictated by E (and // tau); this is part of the strategy used to ensure that the value of D we // use is at least twice the value that would ensure positive variances. int32 iter, max_iter = 100; for (iter = 0; iter < max_iter; iter++) { // will normally break from the loop // the first time. if (EBWUpdateGaussian(D, flags, diaggmmnormal.means_.Row(g), diaggmmnormal.vars_.Row(g), mean_stats, var_stats, num_count-den_count, &mean, &var, NULL)) { // Succeeded in getting all +ve vars at this value of D. // So double D and commit changes. D *= 2.0; double auxf_impr = 0.0; bool ans = EBWUpdateGaussian(D, flags, diaggmmnormal.means_.Row(g), diaggmmnormal.vars_.Row(g), mean_stats, var_stats, num_count-den_count, &mean, &var, &auxf_impr); if (!ans) { KALDI_WARN << "Something went wrong in the EBW update. Check that your" "previous update phase looks reasonable, probably your model is " "already ruined. Reverting to the old values"; } else { if (auxf_change_out) *auxf_change_out += auxf_impr; if (count_out) *count_out += den_count; // The idea is that for MMI, this will // reflect the actual #frames trained on (the numerator one would be I-smoothed). // In general (e.g. for MPE), we won't know the #frames. diaggmmnormal.means_.CopyRowFromVec(mean, g); diaggmmnormal.vars_.CopyRowFromVec(var, g); } break; } else { // small step D *= 1.1; } } if (iter > 0 && num_floored_out != NULL) (*num_floored_out)++; if (iter == max_iter) KALDI_WARN << "Dropped off end of loop, recomputing D. (unexpected.)"; } // copy to natural representation according to flags. diaggmmnormal.CopyToDiagGmm(gmm, flags); gmm->ComputeGconsts(); } void UpdateEbwWeightsDiagGmm(const AccumDiagGmm &num_stats, // should have no I-smoothing const AccumDiagGmm &den_stats, const EbwWeightOptions &opts, DiagGmm *gmm, BaseFloat *auxf_change_out, BaseFloat *count_out) { DiagGmmNormal diaggmmnormal; gmm->ComputeGconsts(); diaggmmnormal.CopyFromDiagGmm(*gmm); Vector<double> weights(diaggmmnormal.weights_), num_occs(num_stats.occupancy()), den_occs(den_stats.occupancy()); if (opts.tau == 0.0 && num_occs.Sum() + den_occs.Sum() < opts.min_num_count_weight_update) { KALDI_LOG << "Not updating weights for this state because total count is " << num_occs.Sum() + den_occs.Sum() << " < " << opts.min_num_count_weight_update; if (count_out) *count_out += num_occs.Sum(); return; } num_occs.AddVec(opts.tau, weights); KALDI_ASSERT(weights.Dim() == num_occs.Dim() && num_occs.Dim() == den_occs.Dim()); if (weights.Dim() == 1) return; // Nothing to do: only one mixture. double weight_auxf_at_start = 0.0, weight_auxf_at_end = 0.0; int32 num_comp = weights.Dim(); for (int32 g = 0; g < num_comp; g++) { // c.f. eq. 4.32 in Dan Povey's thesis. weight_auxf_at_start += num_occs(g) * log (weights(g)) - den_occs(g) * weights(g) / diaggmmnormal.weights_(g); } for (int32 iter = 0; iter < 50; iter++) { Vector<double> k_jm(num_comp); // c.f. eq. 4.35 double max_m = 0.0; for (int32 g = 0; g < num_comp; g++) max_m = std::max(max_m, den_occs(g)/diaggmmnormal.weights_(g)); for (int32 g = 0; g < num_comp; g++) k_jm(g) = max_m - den_occs(g)/diaggmmnormal.weights_(g); for (int32 g = 0; g < num_comp; g++) // c.f. eq. 4.34 weights(g) = num_occs(g) + k_jm(g)*weights(g); weights.Scale(1.0 / weights.Sum()); // c.f. eq. 4.34 (denominator) } for (int32 g = 0; g < num_comp; g++) { // weight flooring. if (weights(g) < opts.min_gaussian_weight) weights(g) = opts.min_gaussian_weight; } weights.Scale(1.0 / weights.Sum()); // renormalize after flooring.. // floor won't be exact now but doesn't really matter. for (int32 g = 0; g < num_comp; g++) { // c.f. eq. 4.32 in Dan Povey's thesis. weight_auxf_at_end += num_occs(g) * log (weights(g)) - den_occs(g) * weights(g) / diaggmmnormal.weights_(g); } if (auxf_change_out) *auxf_change_out += weight_auxf_at_end - weight_auxf_at_start; if (count_out) *count_out += num_occs.Sum(); // only really valid for MMI [not MPE, or MMI // with canceled stats] diaggmmnormal.weights_.CopyFromVec(weights); // copy to natural representation diaggmmnormal.CopyToDiagGmm(gmm, kGmmAll); gmm->ComputeGconsts(); } void UpdateEbwAmDiagGmm(const AccumAmDiagGmm &num_stats, // with I-smoothing, if used. const AccumAmDiagGmm &den_stats, GmmFlagsType flags, const EbwOptions &opts, AmDiagGmm *am_gmm, BaseFloat *auxf_change_out, BaseFloat *count_out, int32 *num_floored_out) { KALDI_ASSERT(num_stats.NumAccs() == den_stats.NumAccs() && num_stats.NumAccs() == am_gmm->NumPdfs()); if (auxf_change_out) *auxf_change_out = 0.0; if (count_out) *count_out = 0.0; if (num_floored_out) *num_floored_out = 0.0; for (int32 pdf = 0; pdf < num_stats.NumAccs(); pdf++) UpdateEbwDiagGmm(num_stats.GetAcc(pdf), den_stats.GetAcc(pdf), flags, opts, &(am_gmm->GetPdf(pdf)), auxf_change_out, count_out, num_floored_out); } void UpdateEbwWeightsAmDiagGmm(const AccumAmDiagGmm &num_stats, // with I-smoothing, if used. const AccumAmDiagGmm &den_stats, const EbwWeightOptions &opts, AmDiagGmm *am_gmm, BaseFloat *auxf_change_out, BaseFloat *count_out) { KALDI_ASSERT(num_stats.NumAccs() == den_stats.NumAccs() && num_stats.NumAccs() == am_gmm->NumPdfs()); if (auxf_change_out) *auxf_change_out = 0.0; if (count_out) *count_out = 0.0; for (int32 pdf = 0; pdf < num_stats.NumAccs(); pdf++) UpdateEbwWeightsDiagGmm(num_stats.GetAcc(pdf), den_stats.GetAcc(pdf), opts, &(am_gmm->GetPdf(pdf)), auxf_change_out, count_out); } void IsmoothStatsDiagGmm(const AccumDiagGmm &src_stats, double tau, AccumDiagGmm *dst_stats) { KALDI_ASSERT(src_stats.NumGauss() == dst_stats->NumGauss()); int32 dim = src_stats.Dim(), num_gauss = src_stats.NumGauss(); for (int32 g = 0; g < num_gauss; g++) { double occ = src_stats.occupancy()(g); if (occ != 0.0) { // can only do this for nonzero occupancies... Vector<double> x_stats(dim), x2_stats(dim); if (dst_stats->Flags() & kGmmMeans) x_stats.CopyFromVec(src_stats.mean_accumulator().Row(g)); if (dst_stats->Flags() & kGmmVariances) x2_stats.CopyFromVec(src_stats.variance_accumulator().Row(g)); x_stats.Scale(tau / occ); x2_stats.Scale(tau / occ); dst_stats->AddStatsForComponent(g, tau, x_stats, x2_stats); } } } /// Creates stats from the GMM. Resizes them as needed. void DiagGmmToStats(const DiagGmm &gmm, GmmFlagsType flags, double state_occ, AccumDiagGmm *dst_stats) { dst_stats->Resize(gmm, AugmentGmmFlags(flags)); int32 num_gauss = gmm.NumGauss(), dim = gmm.Dim(); DiagGmmNormal gmmnormal(gmm); Vector<double> x_stats(dim), x2_stats(dim); for (int32 g = 0; g < num_gauss; g++) { double occ = state_occ * gmmnormal.weights_(g); x_stats.SetZero(); x_stats.AddVec(occ, gmmnormal.means_.Row(g)); x2_stats.SetZero(); x2_stats.AddVec2(occ, gmmnormal.means_.Row(g)); x2_stats.AddVec(occ, gmmnormal.vars_.Row(g)); dst_stats->AddStatsForComponent(g, occ, x_stats, x2_stats); } } void IsmoothStatsAmDiagGmm(const AccumAmDiagGmm &src_stats, double tau, AccumAmDiagGmm *dst_stats) { int num_pdfs = src_stats.NumAccs(); KALDI_ASSERT(num_pdfs == dst_stats->NumAccs()); for (int32 pdf = 0; pdf < num_pdfs; pdf++) IsmoothStatsDiagGmm(src_stats.GetAcc(pdf), tau, &(dst_stats->GetAcc(pdf))); } void IsmoothStatsAmDiagGmmFromModel(const AmDiagGmm &src_model, double tau, AccumAmDiagGmm *dst_stats) { int num_pdfs = src_model.NumPdfs(); KALDI_ASSERT(num_pdfs == dst_stats->NumAccs()); for (int32 pdf = 0; pdf < num_pdfs; pdf++) { AccumDiagGmm tmp_stats; double occ = 1.0; // its value doesn't matter. DiagGmmToStats(src_model.GetPdf(pdf), kGmmAll, occ, &tmp_stats); IsmoothStatsDiagGmm(tmp_stats, tau, &(dst_stats->GetAcc(pdf))); } } } // End of namespace kaldi |