Blame view

src/gmm/ebw-diag-gmm.cc 14.8 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
  // gmm/ebw-diag-gmm.cc
  
  // Copyright 2009-2011  Arnab Ghoshal, Petr Motlicek
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <algorithm>  // for std::max
  #include <string>
  #include <vector>
  
  #include "gmm/diag-gmm.h"
  #include "gmm/ebw-diag-gmm.h"
  
  namespace kaldi {
  
  // This function is used inside the EBW update routines.
  // returns true if all variances were positive.
  static bool EBWUpdateGaussian(
      BaseFloat D,
      GmmFlagsType flags,
      const VectorBase<double> &orig_mean,
      const VectorBase<double> &orig_var,
      const VectorBase<double> &x_stats,
      const VectorBase<double> &x2_stats,
      double occ,
      VectorBase<double> *mean,
      VectorBase<double> *var,
      double *auxf_impr) {
    if (! (flags&(kGmmMeans|kGmmVariances))) { // nothing to do.
      if (auxf_impr) *auxf_impr = 0.0;
      mean->CopyFromVec(orig_mean);
      var->CopyFromVec(orig_var);
      return true; 
    }   
    KALDI_ASSERT(!( (flags&kGmmVariances) && !(flags&kGmmMeans))
                 && "We didn't make the update cover this case sensibly (update vars not means)");
    
    mean->SetZero();
    var->SetZero();
    mean->AddVec(D, orig_mean);
    var->AddVec2(D, orig_mean);
    var->AddVec(D, orig_var);
    mean->AddVec(1.0, x_stats);
    var->AddVec(1.0, x2_stats);
    BaseFloat scale = 1.0 / (occ + D);
    mean->Scale(scale);
    var->Scale(scale);
    var->AddVec2(-1.0, *mean);
    
    if (!(flags&kGmmVariances)) var->CopyFromVec(orig_var);
    if (!(flags&kGmmMeans)) mean->CopyFromVec(orig_mean);
  
    // Return false if any NaN's.
    for (int32 i = 0; i < mean->Dim(); i++) {
      double m =  ((*mean)(i)), v = ((*var)(i));
      if (m!=m || v!=v || m-m != 0 || v-v != 0) {
        return false;
      }
    }
    
    if (var->Min() > 0.0) {
      if (auxf_impr != NULL) {
        // work out auxf improvement.  
        BaseFloat old_auxf = 0.0, new_auxf = 0.0;
        int32 dim = orig_mean.Dim();
        for (int32 i = 0; i < dim; i++) {
          BaseFloat mean_diff = (*mean)(i) - orig_mean(i);
          old_auxf += (occ+D) * -0.5 * (Log(orig_var(i)) +
                                        ((*var)(i) + mean_diff*mean_diff)
                                        / orig_var(i));
          new_auxf += (occ+D) * -0.5 * (Log((*var)(i)) + 1.0);
          
        }
        *auxf_impr = new_auxf - old_auxf;
      }
      return true;
    } else return false;
  }
  
  // Update Gaussian parameters only (no weights)
  void UpdateEbwDiagGmm(const AccumDiagGmm &num_stats, // with I-smoothing, if used.
                        const AccumDiagGmm &den_stats,
                        GmmFlagsType flags,
                        const EbwOptions &opts,
                        DiagGmm *gmm,
                        BaseFloat *auxf_change_out,
                        BaseFloat *count_out,
                        int32 *num_floored_out) {
    GmmFlagsType acc_flags = num_stats.Flags();
    if (flags & ~acc_flags)
      KALDI_ERR << "Incompatible flags: you requested to update flags \""
                << GmmFlagsToString(flags) << "\" but accumulators have only \""
                << GmmFlagsToString(acc_flags) << '"';
    
    // It could be that the num stats actually contain the difference between
    // num and den (for mean and var stats), and den stats only have the weights.
    bool den_has_stats;
    if (den_stats.Flags() != acc_flags) {
      den_has_stats = false;
      if (den_stats.Flags() != kGmmWeights) 
        KALDI_ERR << "Incompatible flags: num stats have flags \""
                  << GmmFlagsToString(acc_flags) << "\" vs. den stats \""
                  << GmmFlagsToString(den_stats.Flags()) << '"';
    } else {
      den_has_stats = true;
    }
    int32 num_comp = num_stats.NumGauss();
    int32 dim = num_stats.Dim();
    KALDI_ASSERT(num_stats.NumGauss() == den_stats.NumGauss());
    KALDI_ASSERT(num_stats.Dim() == gmm->Dim());
    KALDI_ASSERT(gmm->NumGauss() == num_comp);
    
    if ( !(flags & (kGmmMeans | kGmmVariances)) ) {
      return; // Nothing to update.
    }
    
    // copy DiagGMM model and transform this to the normal case
    DiagGmmNormal diaggmmnormal;
    gmm->ComputeGconsts();
    diaggmmnormal.CopyFromDiagGmm(*gmm);
  
    // go over all components
    Vector<double> mean(dim), var(dim), mean_stats(dim), var_stats(dim);
  
    for (int32 g = 0; g < num_comp; g++) {
      BaseFloat num_count = num_stats.occupancy()(g),
          den_count = den_stats.occupancy()(g);
      if (num_count == 0.0 && den_count == 0.0) {
        KALDI_VLOG(2) << "Not updating Gaussian " << g << " since counts are zero";
        continue;
      }
      mean_stats.CopyFromVec(num_stats.mean_accumulator().Row(g));
      if (den_has_stats)
        mean_stats.AddVec(-1.0, den_stats.mean_accumulator().Row(g));
      if (flags & kGmmVariances) {
        var_stats.CopyFromVec(num_stats.variance_accumulator().Row(g));
        if (den_has_stats)
          var_stats.AddVec(-1.0, den_stats.variance_accumulator().Row(g));
      }
      double D = (opts.tau + opts.E * den_count) / 2;
      if (D+num_count-den_count <= 0.0) {
        // ensure +ve-- can be problem if num count == 0 and E=2.
        D = -1.0001*(num_count-den_count) + 1.0e-10;
        KALDI_ASSERT(D+num_count-den_count > 0.0);
      }
      // We initialize to half the value of D that would be dictated by E (and
      // tau); this is part of the strategy used to ensure that the value of D we
      // use is at least twice the value that would ensure positive variances.
  
      int32 iter, max_iter = 100;
      for (iter = 0; iter < max_iter; iter++) { // will normally break from the loop
        // the first time.
        if (EBWUpdateGaussian(D, flags,
                              diaggmmnormal.means_.Row(g),
                              diaggmmnormal.vars_.Row(g),
                              mean_stats, var_stats, num_count-den_count,
                              &mean, &var, NULL)) {
          // Succeeded in getting all +ve vars at this value of D.
          // So double D and commit changes.
          D *= 2.0;
          double auxf_impr = 0.0;
          bool ans = EBWUpdateGaussian(D, flags,
                                       diaggmmnormal.means_.Row(g),
                                       diaggmmnormal.vars_.Row(g),
                                       mean_stats, var_stats, num_count-den_count,
                                       &mean, &var, &auxf_impr);
          if (!ans) {
            KALDI_WARN << "Something went wrong in the EBW update. Check that your"
                "previous update phase looks reasonable, probably your model is "
                "already ruined.  Reverting to the old values";
          } else {
            if (auxf_change_out) *auxf_change_out += auxf_impr;
            if (count_out) *count_out += den_count; // The idea is that for MMI, this will
            // reflect the actual #frames trained on (the numerator one would be I-smoothed).
            // In general (e.g. for MPE), we won't know the #frames.
            diaggmmnormal.means_.CopyRowFromVec(mean, g);
            diaggmmnormal.vars_.CopyRowFromVec(var, g);
          }
          break;
        } else {
          // small step
          D *= 1.1; 
        }
      }
      if (iter > 0 && num_floored_out != NULL) (*num_floored_out)++;
      if (iter == max_iter) KALDI_WARN << "Dropped off end of loop, recomputing D. (unexpected.)";
    }
    // copy to natural representation according to flags.
    diaggmmnormal.CopyToDiagGmm(gmm, flags);
    gmm->ComputeGconsts();
  }
  
  
  void UpdateEbwWeightsDiagGmm(const AccumDiagGmm &num_stats, // should have no I-smoothing
                               const AccumDiagGmm &den_stats,
                               const EbwWeightOptions &opts,
                               DiagGmm *gmm,
                               BaseFloat *auxf_change_out,
                               BaseFloat *count_out) {
  
    DiagGmmNormal diaggmmnormal;
    gmm->ComputeGconsts();
    diaggmmnormal.CopyFromDiagGmm(*gmm);
  
    Vector<double> weights(diaggmmnormal.weights_),
        num_occs(num_stats.occupancy()),
        den_occs(den_stats.occupancy());
    if (opts.tau == 0.0 &&
        num_occs.Sum() + den_occs.Sum() < opts.min_num_count_weight_update) {
      KALDI_LOG << "Not updating weights for this state because total count is "
                << num_occs.Sum() + den_occs.Sum() << " < "
                << opts.min_num_count_weight_update;
      if (count_out)
        *count_out += num_occs.Sum();
      return;
    }
    num_occs.AddVec(opts.tau, weights);
    KALDI_ASSERT(weights.Dim() == num_occs.Dim() && num_occs.Dim() == den_occs.Dim());
    if (weights.Dim() == 1) return; // Nothing to do: only one mixture.
    double weight_auxf_at_start = 0.0, weight_auxf_at_end = 0.0;
    
    int32 num_comp = weights.Dim();
    for (int32 g = 0; g < num_comp; g++) {   // c.f. eq. 4.32 in Dan Povey's thesis.
      weight_auxf_at_start +=
          num_occs(g) * log (weights(g))
          - den_occs(g) * weights(g) / diaggmmnormal.weights_(g);
    }
    for (int32 iter = 0; iter < 50; iter++) {
      Vector<double> k_jm(num_comp); // c.f. eq. 4.35
      double max_m = 0.0;
      for (int32 g = 0; g < num_comp; g++)
        max_m = std::max(max_m, den_occs(g)/diaggmmnormal.weights_(g));
      for (int32 g = 0; g < num_comp; g++)
        k_jm(g) = max_m - den_occs(g)/diaggmmnormal.weights_(g);
      for (int32 g = 0; g < num_comp; g++) // c.f. eq. 4.34
        weights(g) = num_occs(g) + k_jm(g)*weights(g);
      weights.Scale(1.0 / weights.Sum()); // c.f. eq. 4.34 (denominator)
    }
    for (int32 g = 0; g < num_comp; g++) {   // weight flooring.
      if (weights(g) < opts.min_gaussian_weight)
        weights(g) = opts.min_gaussian_weight;
    }
    weights.Scale(1.0 / weights.Sum()); // renormalize after flooring..
    // floor won't be exact now but doesn't really matter.
  
    for (int32 g = 0; g < num_comp; g++) {   // c.f. eq. 4.32 in Dan Povey's thesis.
      weight_auxf_at_end +=
          num_occs(g) * log (weights(g))
          - den_occs(g) * weights(g) / diaggmmnormal.weights_(g);
    }
  
    if (auxf_change_out)
      *auxf_change_out += weight_auxf_at_end - weight_auxf_at_start;
    if (count_out)
      *count_out += num_occs.Sum(); // only really valid for MMI [not MPE, or MMI
    // with canceled stats]
    
    diaggmmnormal.weights_.CopyFromVec(weights);
  
    // copy to natural representation
    diaggmmnormal.CopyToDiagGmm(gmm, kGmmAll);
    gmm->ComputeGconsts();
  }
  
  void UpdateEbwAmDiagGmm(const AccumAmDiagGmm &num_stats, // with I-smoothing, if used.
                          const AccumAmDiagGmm &den_stats,
                          GmmFlagsType flags,
                          const EbwOptions &opts,
                          AmDiagGmm *am_gmm,
                          BaseFloat *auxf_change_out,
                          BaseFloat *count_out,
                          int32 *num_floored_out) {
    KALDI_ASSERT(num_stats.NumAccs() == den_stats.NumAccs()
                 && num_stats.NumAccs() == am_gmm->NumPdfs());
  
    if (auxf_change_out) *auxf_change_out = 0.0;
    if (count_out) *count_out = 0.0;
    if (num_floored_out) *num_floored_out = 0.0;
  
    for (int32 pdf = 0; pdf < num_stats.NumAccs(); pdf++)
      UpdateEbwDiagGmm(num_stats.GetAcc(pdf), den_stats.GetAcc(pdf), flags,
                       opts, &(am_gmm->GetPdf(pdf)), auxf_change_out,
                       count_out, num_floored_out);
  }                     
  
  
  void UpdateEbwWeightsAmDiagGmm(const AccumAmDiagGmm &num_stats, // with I-smoothing, if used.
                                 const AccumAmDiagGmm &den_stats,
                                 const EbwWeightOptions &opts,
                                 AmDiagGmm *am_gmm,
                                 BaseFloat *auxf_change_out,
                                 BaseFloat *count_out) {
    KALDI_ASSERT(num_stats.NumAccs() == den_stats.NumAccs()
                 && num_stats.NumAccs() == am_gmm->NumPdfs());
  
    if (auxf_change_out) *auxf_change_out = 0.0;
    if (count_out) *count_out = 0.0;
    
    for (int32 pdf = 0; pdf < num_stats.NumAccs(); pdf++)
      UpdateEbwWeightsDiagGmm(num_stats.GetAcc(pdf), den_stats.GetAcc(pdf),
                              opts, &(am_gmm->GetPdf(pdf)), auxf_change_out,
                              count_out);
  }                     
  
  void IsmoothStatsDiagGmm(const AccumDiagGmm &src_stats,
                           double tau,
                           AccumDiagGmm *dst_stats) {
    KALDI_ASSERT(src_stats.NumGauss() == dst_stats->NumGauss());
    int32 dim = src_stats.Dim(), num_gauss = src_stats.NumGauss();
    for (int32 g = 0; g < num_gauss; g++) {
      double occ = src_stats.occupancy()(g);
      if (occ != 0.0) { // can only do this for nonzero occupancies...
        Vector<double> x_stats(dim), x2_stats(dim);
        if (dst_stats->Flags() & kGmmMeans)
          x_stats.CopyFromVec(src_stats.mean_accumulator().Row(g));
        if (dst_stats->Flags() & kGmmVariances)
          x2_stats.CopyFromVec(src_stats.variance_accumulator().Row(g));
        x_stats.Scale(tau / occ);
        x2_stats.Scale(tau / occ);
        dst_stats->AddStatsForComponent(g, tau, x_stats, x2_stats);
      }
    }
  }
  
  /// Creates stats from the GMM.  Resizes them as needed.
  void DiagGmmToStats(const DiagGmm &gmm,
                      GmmFlagsType flags,
                      double state_occ,
                      AccumDiagGmm *dst_stats) {
    dst_stats->Resize(gmm, AugmentGmmFlags(flags));
    int32 num_gauss = gmm.NumGauss(), dim = gmm.Dim();
    DiagGmmNormal gmmnormal(gmm);
    Vector<double> x_stats(dim), x2_stats(dim);
    for (int32 g = 0; g < num_gauss; g++) {
      double occ = state_occ * gmmnormal.weights_(g);
      x_stats.SetZero();
      x_stats.AddVec(occ, gmmnormal.means_.Row(g));
      x2_stats.SetZero();
      x2_stats.AddVec2(occ, gmmnormal.means_.Row(g));
      x2_stats.AddVec(occ, gmmnormal.vars_.Row(g));
      dst_stats->AddStatsForComponent(g, occ, x_stats, x2_stats);
    }
  }
  
  void IsmoothStatsAmDiagGmm(const AccumAmDiagGmm &src_stats,
                             double tau,
                             AccumAmDiagGmm *dst_stats) {
    int num_pdfs = src_stats.NumAccs();
    KALDI_ASSERT(num_pdfs == dst_stats->NumAccs());
    for (int32 pdf = 0; pdf < num_pdfs; pdf++)
      IsmoothStatsDiagGmm(src_stats.GetAcc(pdf), tau, &(dst_stats->GetAcc(pdf)));
  }
  
  void IsmoothStatsAmDiagGmmFromModel(const AmDiagGmm &src_model,
                                      double tau,
                                      AccumAmDiagGmm *dst_stats) {
    int num_pdfs = src_model.NumPdfs();
    KALDI_ASSERT(num_pdfs == dst_stats->NumAccs());
    for (int32 pdf = 0; pdf < num_pdfs; pdf++) {
      AccumDiagGmm tmp_stats;
      double occ = 1.0; // its value doesn't matter.
      DiagGmmToStats(src_model.GetPdf(pdf), kGmmAll, occ, &tmp_stats);
      IsmoothStatsDiagGmm(tmp_stats, tau, &(dst_stats->GetAcc(pdf)));
    }
  }
  
  
  
  }  // End of namespace kaldi