Blame view
src/gmm/mle-am-diag-gmm-test.cc
4.79 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
// gmm/mle-am-diag-gmm-test.cc // Copyright 2009-2012 Arnab Ghoshal // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "gmm/model-test-common.h" #include "gmm/am-diag-gmm.h" #include "gmm/mle-am-diag-gmm.h" #include "util/kaldi-io.h" using kaldi::AmDiagGmm; using kaldi::AccumAmDiagGmm; using kaldi::int32; using kaldi::BaseFloat; namespace ut = kaldi::unittest; using namespace kaldi; // Tests the Read() and Write() methods for the accumulators, in both binary // and ASCII mode. void TestAmDiagGmmAccsIO(const AmDiagGmm &am_gmm, const Matrix<BaseFloat> &feats) { kaldi::GmmFlagsType flags = kaldi::kGmmAll; AccumAmDiagGmm accs; accs.Init(am_gmm, flags); BaseFloat loglike = 0.0; for (int32 i = 0; i < feats.NumRows(); i++) { int32 state = RandInt(0, am_gmm.NumPdfs()-1); loglike += accs.AccumulateForGmm(am_gmm, feats.Row(i), state, 1.0); } KALDI_LOG << "Data log-likelihood = " << loglike << " over " << feats.NumRows() << " frames."; KALDI_LOG << "Accumulated values: log-like = " << accs.TotLogLike() << ", # frames = " << accs.TotCount(); AssertEqual(accs.TotLogLike(), loglike, 1e-5); AssertEqual(accs.TotCount(), static_cast<BaseFloat>(feats.NumRows()), 1e-5); MleDiagGmmOptions config; AmDiagGmm *am_gmm1 = new AmDiagGmm(); am_gmm1->CopyFromAmDiagGmm(am_gmm); MleAmDiagGmmUpdate(config, accs, flags, am_gmm1, NULL, NULL); int32 check_pdf = RandInt(0, am_gmm.NumPdfs()-1), check_frame = RandInt(0, feats.NumRows()-1); BaseFloat loglike1 = am_gmm1->LogLikelihood(check_pdf, feats.Row(check_frame)); delete am_gmm1; // First, non-binary write accs.Write(kaldi::Output("tmpf", false).Stream(), false); bool binary_in; AccumAmDiagGmm *accs1 = new AccumAmDiagGmm(); // Non-binary read kaldi::Input ki1("tmpf", &binary_in); accs1->Read(ki1.Stream(), binary_in, false); AmDiagGmm *am_gmm2 = new AmDiagGmm(); am_gmm2->CopyFromAmDiagGmm(am_gmm); MleAmDiagGmmUpdate(config, accs, flags, am_gmm2, NULL, NULL); BaseFloat loglike2 = am_gmm2->LogLikelihood(check_pdf, feats.Row(check_frame)); kaldi::AssertEqual(loglike1, loglike2, 1e-6); delete am_gmm2; delete accs1; // Next, binary write accs.Write(kaldi::Output("tmpfb", true).Stream(), true); AccumAmDiagGmm *accs2 = new AccumAmDiagGmm(); // Binary read kaldi::Input ki2("tmpfb", &binary_in); accs2->Read(ki2.Stream(), binary_in, false); AmDiagGmm *am_gmm3 = new AmDiagGmm(); am_gmm3->CopyFromAmDiagGmm(am_gmm); MleAmDiagGmmUpdate(config, accs, flags, am_gmm3, NULL, NULL); BaseFloat loglike3 = am_gmm3->LogLikelihood(check_pdf, feats.Row(check_frame)); kaldi::AssertEqual(loglike1, loglike3, 1e-6); delete am_gmm3; delete accs2; unlink("tmpf"); unlink("tmpfb"); } void UnitTestMleAmDiagGmm() { int32 dim = 1 + kaldi::RandInt(0, 9), // random dimension of the gmm num_pdfs = 5 + kaldi::RandInt(0, 9); // random number of states AmDiagGmm am_gmm; int32 total_num_comp = 0; for (int32 i = 0; i < num_pdfs; i++) { int32 num_comp = 1 + kaldi::RandInt(0, 9); // random mixture size kaldi::DiagGmm gmm; ut::InitRandDiagGmm(dim, num_comp, &gmm); am_gmm.AddPdf(gmm); total_num_comp += num_comp; } kaldi::Matrix<BaseFloat> feats; { // First, generate random means and variances int32 num_feat_comp = total_num_comp + kaldi::RandInt(-total_num_comp/2, total_num_comp/2); kaldi::Matrix<BaseFloat> means(num_feat_comp, dim), vars(num_feat_comp, dim); for (int32 m = 0; m < num_feat_comp; m++) { for (int32 d= 0; d < dim; d++) { means(m, d) = kaldi::RandGauss(); vars(m, d) = Exp(kaldi::RandGauss()) + 1e-2; } } // Now generate random features with those means and variances. feats.Resize(num_feat_comp * 200, dim); for (int32 m = 0; m < num_feat_comp; m++) { kaldi::SubMatrix<BaseFloat> tmp(feats, m*200, 200, 0, dim); ut::RandDiagGaussFeatures(200, means.Row(m), vars.Row(m), &tmp); } } TestAmDiagGmmAccsIO(am_gmm, feats); } int main() { // std::srand(time(NULL)); for (int i = 0; i < 10; i++) UnitTestMleAmDiagGmm(); std::cout << "Test OK. "; return 0; } |