Blame view
src/gmm/mle-diag-gmm.cc
20.8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
// gmm/mle-diag-gmm.cc // Copyright 2009-2013 Saarland University; Georg Stemmer; Jan Silovsky; // Microsoft Corporation; Yanmin Qian; // Johns Hopkins University (author: Daniel Povey); // Cisco Systems (author: Neha Agrawal) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <algorithm> // for std::max #include <string> #include <vector> #include "gmm/diag-gmm.h" #include "gmm/mle-diag-gmm.h" #include "util/kaldi-thread.h" namespace kaldi { void AccumDiagGmm::Read(std::istream &in_stream, bool binary, bool add) { int32 dimension, num_components; GmmFlagsType flags; std::string token; ExpectToken(in_stream, binary, "<GMMACCS>"); ExpectToken(in_stream, binary, "<VECSIZE>"); ReadBasicType(in_stream, binary, &dimension); ExpectToken(in_stream, binary, "<NUMCOMPONENTS>"); ReadBasicType(in_stream, binary, &num_components); ExpectToken(in_stream, binary, "<FLAGS>"); ReadBasicType(in_stream, binary, &flags); if (add) { if ((NumGauss() != 0 || Dim() != 0 || Flags() != 0)) { if (num_components != NumGauss() || dimension != Dim() || flags != Flags()) KALDI_ERR << "MlEstimatediagGmm::Read, dimension or flags mismatch, " << NumGauss() << ", " << Dim() << ", " << GmmFlagsToString(Flags()) << " vs. " << num_components << ", " << dimension << ", " << flags << " (mixing accs from different " << "models?"; } else { Resize(num_components, dimension, flags); } } else { Resize(num_components, dimension, flags); } ReadToken(in_stream, binary, &token); while (token != "</GMMACCS>") { if (token == "<OCCUPANCY>") { occupancy_.Read(in_stream, binary, add); } else if (token == "<MEANACCS>") { mean_accumulator_.Read(in_stream, binary, add); } else if (token == "<DIAGVARACCS>") { variance_accumulator_.Read(in_stream, binary, add); } else { KALDI_ERR << "Unexpected token '" << token << "' in model file "; } ReadToken(in_stream, binary, &token); } } void AccumDiagGmm::Write(std::ostream &out_stream, bool binary) const { WriteToken(out_stream, binary, "<GMMACCS>"); WriteToken(out_stream, binary, "<VECSIZE>"); WriteBasicType(out_stream, binary, dim_); WriteToken(out_stream, binary, "<NUMCOMPONENTS>"); WriteBasicType(out_stream, binary, num_comp_); WriteToken(out_stream, binary, "<FLAGS>"); WriteBasicType(out_stream, binary, flags_); // convert into BaseFloat before writing things Vector<BaseFloat> occupancy_bf(occupancy_.Dim()); Matrix<BaseFloat> mean_accumulator_bf(mean_accumulator_.NumRows(), mean_accumulator_.NumCols()); Matrix<BaseFloat> variance_accumulator_bf(variance_accumulator_.NumRows(), variance_accumulator_.NumCols()); occupancy_bf.CopyFromVec(occupancy_); mean_accumulator_bf.CopyFromMat(mean_accumulator_); variance_accumulator_bf.CopyFromMat(variance_accumulator_); WriteToken(out_stream, binary, "<OCCUPANCY>"); occupancy_bf.Write(out_stream, binary); WriteToken(out_stream, binary, "<MEANACCS>"); mean_accumulator_bf.Write(out_stream, binary); WriteToken(out_stream, binary, "<DIAGVARACCS>"); variance_accumulator_bf.Write(out_stream, binary); WriteToken(out_stream, binary, "</GMMACCS>"); } void AccumDiagGmm::Resize(int32 num_comp, int32 dim, GmmFlagsType flags) { KALDI_ASSERT(num_comp > 0 && dim > 0); num_comp_ = num_comp; dim_ = dim; flags_ = AugmentGmmFlags(flags); occupancy_.Resize(num_comp); if (flags_ & kGmmMeans) mean_accumulator_.Resize(num_comp, dim); else mean_accumulator_.Resize(0, 0); if (flags_ & kGmmVariances) variance_accumulator_.Resize(num_comp, dim); else variance_accumulator_.Resize(0, 0); } void AccumDiagGmm::SetZero(GmmFlagsType flags) { if (flags & ~flags_) KALDI_ERR << "Flags in argument do not match the active accumulators"; if (flags & kGmmWeights) occupancy_.SetZero(); if (flags & kGmmMeans) mean_accumulator_.SetZero(); if (flags & kGmmVariances) variance_accumulator_.SetZero(); } void AccumDiagGmm::Scale(BaseFloat f, GmmFlagsType flags) { if (flags & ~flags_) KALDI_ERR << "Flags in argument do not match the active accumulators"; double d = static_cast<double>(f); if (flags & kGmmWeights) occupancy_.Scale(d); if (flags & kGmmMeans) mean_accumulator_.Scale(d); if (flags & kGmmVariances) variance_accumulator_.Scale(d); } void AccumDiagGmm::AccumulateForComponent(const VectorBase<BaseFloat> &data, int32 comp_index, BaseFloat weight) { if (flags_ & kGmmMeans) KALDI_ASSERT(data.Dim() == Dim()); double wt = static_cast<double>(weight); KALDI_ASSERT(comp_index < NumGauss()); // accumulate occupancy_(comp_index) += wt; if (flags_ & kGmmMeans) { Vector<double> data_d(data); // Copy with type-conversion mean_accumulator_.Row(comp_index).AddVec(wt, data_d); if (flags_ & kGmmVariances) { data_d.ApplyPow(2.0); variance_accumulator_.Row(comp_index).AddVec(wt, data_d); } } } void AccumDiagGmm::AddStatsForComponent(int32 g, double occ, const VectorBase<double> &x_stats, const VectorBase<double> &x2_stats) { KALDI_ASSERT(g < NumGauss()); occupancy_(g) += occ; if (flags_ & kGmmMeans) mean_accumulator_.Row(g).AddVec(1.0, x_stats); if (flags_ & kGmmVariances) variance_accumulator_.Row(g).AddVec(1.0, x2_stats); } void AccumDiagGmm::AccumulateFromPosteriors( const VectorBase<BaseFloat> &data, const VectorBase<BaseFloat> &posteriors) { if (flags_ & kGmmMeans) KALDI_ASSERT(static_cast<int32>(data.Dim()) == Dim()); KALDI_ASSERT(static_cast<int32>(posteriors.Dim()) == NumGauss()); Vector<double> post_d(posteriors); // Copy with type-conversion // accumulate occupancy_.AddVec(1.0, post_d); if (flags_ & kGmmMeans) { Vector<double> data_d(data); // Copy with type-conversion mean_accumulator_.AddVecVec(1.0, post_d, data_d); if (flags_ & kGmmVariances) { data_d.ApplyPow(2.0); variance_accumulator_.AddVecVec(1.0, post_d, data_d); } } } BaseFloat AccumDiagGmm::AccumulateFromDiag(const DiagGmm &gmm, const VectorBase<BaseFloat> &data, BaseFloat frame_posterior) { KALDI_ASSERT(gmm.NumGauss() == NumGauss()); KALDI_ASSERT(gmm.Dim() == Dim()); KALDI_ASSERT(static_cast<int32>(data.Dim()) == Dim()); Vector<BaseFloat> posteriors(NumGauss()); BaseFloat log_like = gmm.ComponentPosteriors(data, &posteriors); posteriors.Scale(frame_posterior); AccumulateFromPosteriors(data, posteriors); return log_like; } // Careful: this wouldn't be valid if it were used to update the // Gaussian weights. void AccumDiagGmm::SmoothStats(BaseFloat tau) { Vector<double> smoothing_vec(occupancy_); smoothing_vec.InvertElements(); smoothing_vec.Scale(static_cast<double>(tau)); smoothing_vec.Add(1.0); // now smoothing_vec = (tau + occ) / occ mean_accumulator_.MulRowsVec(smoothing_vec); variance_accumulator_.MulRowsVec(smoothing_vec); occupancy_.Add(static_cast<double>(tau)); } // want to add tau "virtual counts" of each Gaussian from "src_acc" // to each Gaussian in this acc. // Careful: this wouldn't be valid if it were used to update the // Gaussian weights. void AccumDiagGmm::SmoothWithAccum(BaseFloat tau, const AccumDiagGmm &src_acc) { KALDI_ASSERT(src_acc.NumGauss() == num_comp_ && src_acc.Dim() == dim_); for (int32 i = 0; i < num_comp_; i++) { if (src_acc.occupancy_(i) != 0.0) { // can only smooth if src was nonzero... occupancy_(i) += tau; mean_accumulator_.Row(i).AddVec(tau / src_acc.occupancy_(i), src_acc.mean_accumulator_.Row(i)); variance_accumulator_.Row(i).AddVec(tau / src_acc.occupancy_(i), src_acc.variance_accumulator_.Row(i)); } else KALDI_WARN << "Could not smooth since source acc had zero occupancy."; } } void AccumDiagGmm::SmoothWithModel(BaseFloat tau, const DiagGmm &gmm) { KALDI_ASSERT(gmm.NumGauss() == num_comp_ && gmm.Dim() == dim_); Matrix<double> means(num_comp_, dim_); Matrix<double> vars(num_comp_, dim_); gmm.GetMeans(&means); gmm.GetVars(&vars); mean_accumulator_.AddMat(tau, means); means.ApplyPow(2.0); vars.AddMat(1.0, means, kNoTrans); variance_accumulator_.AddMat(tau, vars); occupancy_.Add(tau); } AccumDiagGmm::AccumDiagGmm(const AccumDiagGmm &other) : dim_(other.dim_), num_comp_(other.num_comp_), flags_(other.flags_), occupancy_(other.occupancy_), mean_accumulator_(other.mean_accumulator_), variance_accumulator_(other.variance_accumulator_) {} BaseFloat MlObjective(const DiagGmm &gmm, const AccumDiagGmm &diag_gmm_acc) { GmmFlagsType acc_flags = diag_gmm_acc.Flags(); Vector<BaseFloat> occ_bf(diag_gmm_acc.occupancy()); Matrix<BaseFloat> mean_accs_bf(diag_gmm_acc.mean_accumulator()); Matrix<BaseFloat> variance_accs_bf(diag_gmm_acc.variance_accumulator()); BaseFloat obj = VecVec(occ_bf, gmm.gconsts()); if (acc_flags & kGmmMeans) obj += TraceMatMat(mean_accs_bf, gmm.means_invvars(), kTrans); if (acc_flags & kGmmVariances) obj -= 0.5 * TraceMatMat(variance_accs_bf, gmm.inv_vars(), kTrans); return obj; } void MleDiagGmmUpdate(const MleDiagGmmOptions &config, const AccumDiagGmm &diag_gmm_acc, GmmFlagsType flags, DiagGmm *gmm, BaseFloat *obj_change_out, BaseFloat *count_out, int32 *floored_elements_out, int32 *floored_gaussians_out, int32 *removed_gaussians_out) { KALDI_ASSERT(gmm != NULL); if (flags & ~diag_gmm_acc.Flags()) KALDI_ERR << "Flags in argument do not match the active accumulators"; KALDI_ASSERT(diag_gmm_acc.NumGauss() == gmm->NumGauss() && diag_gmm_acc.Dim() == gmm->Dim()); int32 num_gauss = gmm->NumGauss(); double occ_sum = diag_gmm_acc.occupancy().Sum(); int32 elements_floored = 0, gauss_floored = 0; // remember old objective value gmm->ComputeGconsts(); BaseFloat obj_old = MlObjective(*gmm, diag_gmm_acc); // First get the gmm in "normal" representation (not the exponential-model // form). DiagGmmNormal ngmm(*gmm); std::vector<int32> to_remove; for (int32 i = 0; i < num_gauss; i++) { double occ = diag_gmm_acc.occupancy()(i); double prob; if (occ_sum > 0.0) prob = occ / occ_sum; else prob = 1.0 / num_gauss; if (occ > static_cast<double>(config.min_gaussian_occupancy) && prob > static_cast<double>(config.min_gaussian_weight)) { ngmm.weights_(i) = prob; // copy old mean for later normalizations Vector<double> old_mean(ngmm.means_.Row(i)); // update mean, then variance, as far as there are accumulators if (diag_gmm_acc.Flags() & (kGmmMeans|kGmmVariances)) { Vector<double> mean(diag_gmm_acc.mean_accumulator().Row(i)); mean.Scale(1.0 / occ); // transfer to estimate ngmm.means_.CopyRowFromVec(mean, i); } if (diag_gmm_acc.Flags() & kGmmVariances) { KALDI_ASSERT(diag_gmm_acc.Flags() & kGmmMeans); Vector<double> var(diag_gmm_acc.variance_accumulator().Row(i)); var.Scale(1.0 / occ); var.AddVec2(-1.0, ngmm.means_.Row(i)); // subtract squared means. // if we intend to only update the variances, we need to compensate by // adding the difference between the new and old mean if (!(flags & kGmmMeans)) { old_mean.AddVec(-1.0, ngmm.means_.Row(i)); var.AddVec2(1.0, old_mean); } int32 floored; if (config.variance_floor_vector.Dim() != 0) { floored = var.ApplyFloor(config.variance_floor_vector); } else { var.ApplyFloor(config.min_variance, &floored); } if (floored != 0) { elements_floored += floored; gauss_floored++; } // transfer to estimate ngmm.vars_.CopyRowFromVec(var, i); } } else { // Insufficient occupancy. if (config.remove_low_count_gaussians && static_cast<int32>(to_remove.size()) < num_gauss-1) { // remove the component, unless it is the last one. KALDI_WARN << "Too little data - removing Gaussian (weight " << std::fixed << prob << ", occupation count " << std::fixed << diag_gmm_acc.occupancy()(i) << ", vector size " << gmm->Dim() << ")"; to_remove.push_back(i); } else { KALDI_WARN << "Gaussian has too little data but not removing it because" << (config.remove_low_count_gaussians ? " it is the last Gaussian: i = " : " remove-low-count-gaussians == false: g = ") << i << ", occ = " << diag_gmm_acc.occupancy()(i) << ", weight = " << prob; ngmm.weights_(i) = std::max(prob, static_cast<double>(config.min_gaussian_weight)); } } } // copy to natural representation according to flags ngmm.CopyToDiagGmm(gmm, flags); gmm->ComputeGconsts(); // or MlObjective will fail. BaseFloat obj_new = MlObjective(*gmm, diag_gmm_acc); if (obj_change_out) *obj_change_out = (obj_new - obj_old); if (count_out) *count_out = occ_sum; if (floored_elements_out) *floored_elements_out = elements_floored; if (floored_gaussians_out) *floored_gaussians_out = gauss_floored; if (to_remove.size() > 0) { gmm->RemoveComponents(to_remove, true /*renormalize weights*/); gmm->ComputeGconsts(); } if (removed_gaussians_out != NULL) *removed_gaussians_out = to_remove.size(); if (gauss_floored > 0) KALDI_VLOG(2) << gauss_floored << " variances floored in " << gauss_floored << " Gaussians."; } void AccumDiagGmm::Add(double scale, const AccumDiagGmm &acc) { // The functions called here will crash if the dimensions etc. // or the flags don't match. occupancy_.AddVec(scale, acc.occupancy_); if (flags_ & kGmmMeans) mean_accumulator_.AddMat(scale, acc.mean_accumulator_); if (flags_ & kGmmVariances) variance_accumulator_.AddMat(scale, acc.variance_accumulator_); } void MapDiagGmmUpdate(const MapDiagGmmOptions &config, const AccumDiagGmm &diag_gmm_acc, GmmFlagsType flags, DiagGmm *gmm, BaseFloat *obj_change_out, BaseFloat *count_out) { KALDI_ASSERT(gmm != NULL); if (flags & ~diag_gmm_acc.Flags()) KALDI_ERR << "Flags in argument do not match the active accumulators"; KALDI_ASSERT(diag_gmm_acc.NumGauss() == gmm->NumGauss() && diag_gmm_acc.Dim() == gmm->Dim()); int32 num_gauss = gmm->NumGauss(); double occ_sum = diag_gmm_acc.occupancy().Sum(); // remember the old objective function value gmm->ComputeGconsts(); BaseFloat obj_old = MlObjective(*gmm, diag_gmm_acc); // allocate the gmm in normal representation; all parameters of this will be // updated, but only the flagged ones will be transferred back to gmm DiagGmmNormal ngmm(*gmm); for (int32 i = 0; i < num_gauss; i++) { double occ = diag_gmm_acc.occupancy()(i); // First update the weight. The weight_tau is a tau for the // whole state. ngmm.weights_(i) = (occ + ngmm.weights_(i) * config.weight_tau) / (occ_sum + config.weight_tau); if (occ > 0.0 && (flags & kGmmMeans)) { // Update the Gaussian mean. Vector<double> old_mean(ngmm.means_.Row(i)); Vector<double> mean(diag_gmm_acc.mean_accumulator().Row(i)); mean.Scale(1.0 / (occ + config.mean_tau)); mean.AddVec(config.mean_tau / (occ + config.mean_tau), old_mean); ngmm.means_.CopyRowFromVec(mean, i); } if (occ > 0.0 && (flags & kGmmVariances)) { // Computing the variance around the updated mean; this is: // E( (x - mu)^2 ) = E( x^2 - 2 x mu + mu^2 ) = // E(x^2) + mu^2 - 2 mu E(x). Vector<double> old_var(ngmm.vars_.Row(i)); Vector<double> var(diag_gmm_acc.variance_accumulator().Row(i)); var.Scale(1.0 / occ); var.AddVec2(1.0, ngmm.means_.Row(i)); SubVector<double> mean_acc(diag_gmm_acc.mean_accumulator(), i), mean(ngmm.means_, i); var.AddVecVec(-2.0 / occ, mean_acc, mean, 1.0); // now var is E(x^2) + m^2 - 2 mu E(x). // Next we do the appropriate weighting usnig the tau value. var.Scale(occ / (config.variance_tau + occ)); var.AddVec(config.variance_tau / (config.variance_tau + occ), old_var); // Now write to the model. ngmm.vars_.Row(i).CopyFromVec(var); } } // Copy to natural/exponential representation. ngmm.CopyToDiagGmm(gmm, flags); gmm->ComputeGconsts(); // or MlObjective will fail. BaseFloat obj_new = MlObjective(*gmm, diag_gmm_acc); if (obj_change_out) *obj_change_out = (obj_new - obj_old); if (count_out) *count_out = occ_sum; } class AccumulateMultiThreadedClass: public MultiThreadable { public: AccumulateMultiThreadedClass(const DiagGmm &diag_gmm, const MatrixBase<BaseFloat> &data, const VectorBase<BaseFloat> &frame_weights, AccumDiagGmm *accum, double *tot_like): diag_gmm_(diag_gmm), data_(data), frame_weights_(frame_weights), dest_accum_(accum), tot_like_ptr_(tot_like), tot_like_(0.0) { } AccumulateMultiThreadedClass(const AccumulateMultiThreadedClass &other): MultiThreadable(other), diag_gmm_(other.diag_gmm_), data_(other.data_), frame_weights_(other.frame_weights_), dest_accum_(other.dest_accum_), accum_(diag_gmm_, dest_accum_->Flags()), tot_like_ptr_(other.tot_like_ptr_), tot_like_(0.0) { KALDI_ASSERT(data_.NumRows() == frame_weights_.Dim()); } void operator () () { int32 num_frames = data_.NumRows(), num_threads = num_threads_, block_size = (num_frames + num_threads - 1) / num_threads, block_start = block_size * thread_id_, block_end = std::min(num_frames, block_start + block_size); tot_like_ = 0.0; double tot_weight = 0.0; for (int32 t = block_start; t < block_end; t++) { tot_like_ += frame_weights_(t) * accum_.AccumulateFromDiag(diag_gmm_, data_.Row(t), frame_weights_(t)); tot_weight += frame_weights_(t); } KALDI_VLOG(3) << "Thread " << thread_id_ << " saw average likeliood/frame " << (tot_like_ / tot_weight) << " over " << tot_weight << " (weighted) frames."; } ~AccumulateMultiThreadedClass() { if (accum_.Dim() != 0) { // if our accumulator is set up (this is not true // for the single object we use to initialize the others) dest_accum_->Add(1.0, accum_); *tot_like_ptr_ += tot_like_; } } private: const DiagGmm &diag_gmm_; const MatrixBase<BaseFloat> &data_; const VectorBase<BaseFloat> &frame_weights_; AccumDiagGmm *dest_accum_; AccumDiagGmm accum_; double *tot_like_ptr_; double tot_like_; }; BaseFloat AccumDiagGmm::AccumulateFromDiagMultiThreaded( const DiagGmm &gmm, const MatrixBase<BaseFloat> &data, const VectorBase<BaseFloat> &frame_weights, int32 num_threads) { double tot_like = 0.0; AccumulateMultiThreadedClass accumulator(gmm, data, frame_weights, this, &tot_like); { // Note: everything happens in the constructor and destructor of // the object created below. MultiThreader<AccumulateMultiThreadedClass> threader(num_threads, accumulator); // we need to make sure it's destroyed before we access the // value of tot_like. } return tot_like; } void AccumDiagGmm::AssertEqual(const AccumDiagGmm &other) { KALDI_ASSERT(dim_ == other.dim_ && num_comp_ == other.num_comp_ && flags_ == other.flags_); KALDI_ASSERT(occupancy_.ApproxEqual(other.occupancy_)); KALDI_ASSERT(mean_accumulator_.ApproxEqual(other.mean_accumulator_)); KALDI_ASSERT(variance_accumulator_.ApproxEqual(other.variance_accumulator_)); } } // End of namespace kaldi |