Blame view
src/gmm/mle-diag-gmm.h
9.12 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
// gmm/mle-diag-gmm.h // Copyright 2009-2012 Saarland University; Georg Stemmer; // Microsoft Corporation; Jan Silovsky; Yanmin Qian // Johns Hopkins University (author: Daniel Povey) // Cisco Systems (author: Neha Agrawal) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_GMM_MLE_DIAG_GMM_H_ #define KALDI_GMM_MLE_DIAG_GMM_H_ 1 #include "gmm/diag-gmm.h" #include "gmm/diag-gmm-normal.h" #include "gmm/model-common.h" #include "itf/options-itf.h" namespace kaldi { /** \struct MleDiagGmmOptions * Configuration variables like variance floor, minimum occupancy, etc. * needed in the estimation process. */ struct MleDiagGmmOptions { /// Variance floor for each dimension [empty if not supplied]. /// It is in double since the variance is computed in double precision. Vector<double> variance_floor_vector; /// Minimum weight below which a Gaussian is not updated (and is /// removed, if remove_low_count_gaussians == true); BaseFloat min_gaussian_weight; /// Minimum count below which a Gaussian is not updated (and is /// removed, if remove_low_count_gaussians == true). BaseFloat min_gaussian_occupancy; /// Minimum allowed variance in any dimension (if no variance floor) /// It is in double since the variance is computed in double precision. double min_variance; bool remove_low_count_gaussians; MleDiagGmmOptions() { // don't set var floor vector by default. min_gaussian_weight = 1.0e-05; min_gaussian_occupancy = 10.0; min_variance = 0.001; remove_low_count_gaussians = true; } void Register(OptionsItf *opts) { std::string module = "MleDiagGmmOptions: "; opts->Register("min-gaussian-weight", &min_gaussian_weight, module+"Min Gaussian weight before we remove it."); opts->Register("min-gaussian-occupancy", &min_gaussian_occupancy, module+"Minimum occupancy to update a Gaussian."); opts->Register("min-variance", &min_variance, module+"Variance floor (absolute variance)."); opts->Register("remove-low-count-gaussians", &remove_low_count_gaussians, module+"If true, remove Gaussians that fall below the floors."); } }; /** \struct MapDiagGmmOptions * Configuration variables for Maximum A Posteriori (MAP) update. */ struct MapDiagGmmOptions { /// Tau value for the means. BaseFloat mean_tau; /// Tau value for the variances. (Note: /// whether or not the variances are updated at all will /// be controlled by flags.) BaseFloat variance_tau; /// Tau value for the weights-- this tau value is applied /// per state, not per Gaussian. BaseFloat weight_tau; MapDiagGmmOptions(): mean_tau(10.0), variance_tau(50.0), weight_tau(10.0) { } void Register(OptionsItf *opts) { opts->Register("mean-tau", &mean_tau, "Tau value for updating means."); opts->Register("variance-tau", &mean_tau, "Tau value for updating variances (note: only relevant if " "update-flags contains \"v\"."); opts->Register("weight-tau", &weight_tau, "Tau value for updating weights."); } }; class AccumDiagGmm { public: AccumDiagGmm(): dim_(0), num_comp_(0), flags_(0) { } explicit AccumDiagGmm(const DiagGmm &gmm, GmmFlagsType flags) { Resize(gmm, flags); } // provide copy constructor. explicit AccumDiagGmm(const AccumDiagGmm &other); void Read(std::istream &in_stream, bool binary, bool add); void Write(std::ostream &out_stream, bool binary) const; /// Allocates memory for accumulators void Resize(int32 num_gauss, int32 dim, GmmFlagsType flags); /// Calls ResizeAccumulators with arguments based on gmm void Resize(const DiagGmm &gmm, GmmFlagsType flags); /// Returns the number of mixture components int32 NumGauss() const { return num_comp_; } /// Returns the dimensionality of the feature vectors int32 Dim() const { return dim_; } void SetZero(GmmFlagsType flags); void Scale(BaseFloat f, GmmFlagsType flags); /// Accumulate for a single component, given the posterior void AccumulateForComponent(const VectorBase<BaseFloat> &data, int32 comp_index, BaseFloat weight); /// Accumulate for all components, given the posteriors. void AccumulateFromPosteriors(const VectorBase<BaseFloat> &data, const VectorBase<BaseFloat> &gauss_posteriors); /// Accumulate for all components given a diagonal-covariance GMM. /// Computes posteriors and returns log-likelihood BaseFloat AccumulateFromDiag(const DiagGmm &gmm, const VectorBase<BaseFloat> &data, BaseFloat frame_posterior); /// This does the same job as AccumulateFromDiag, but using /// multiple threads. Returns sum of (log-likelihood times /// frame weight) over all frames. BaseFloat AccumulateFromDiagMultiThreaded( const DiagGmm &gmm, const MatrixBase<BaseFloat> &data, const VectorBase<BaseFloat> &frame_weights, int32 num_threads); /// Increment the stats for this component by the specified amount /// (not all parts may be taken, depending on flags). /// Note: x_stats and x2_stats are assumed to already be multiplied by "occ" void AddStatsForComponent(int32 comp_id, double occ, const VectorBase<double> &x_stats, const VectorBase<double> &x2_stats); /// Increment with stats from this other accumulator (times scale) void Add(double scale, const AccumDiagGmm &acc); /// Smooths the accumulated counts by adding 'tau' extra frames. An example /// use for this is I-smoothing for MMIE. Calls SmoothWithAccum. void SmoothStats(BaseFloat tau); /// Smooths the accumulated counts using some other accumulator. Performs a /// weighted sum of the current accumulator with the given one. An example use /// for this is I-smoothing for MMI and MPE. Both accumulators must have the /// same dimension and number of components. void SmoothWithAccum(BaseFloat tau, const AccumDiagGmm &src_acc); /// Smooths the accumulated counts using the parameters of a given model. /// An example use of this is MAP-adaptation. The model must have the /// same dimension and number of components as the current accumulator. void SmoothWithModel(BaseFloat tau, const DiagGmm &src_gmm); // Const accessors GmmFlagsType Flags() const { return flags_; } const VectorBase<double> &occupancy() const { return occupancy_; } const MatrixBase<double> &mean_accumulator() const { return mean_accumulator_; } const MatrixBase<double> &variance_accumulator() const { return variance_accumulator_; } // used in testing. void AssertEqual(const AccumDiagGmm &other); private: int32 dim_; int32 num_comp_; /// Flags corresponding to the accumulators that are stored. GmmFlagsType flags_; Vector<double> occupancy_; Matrix<double> mean_accumulator_; Matrix<double> variance_accumulator_; }; /// Returns "augmented" version of flags: e.g. if just updating means, need /// weights too. GmmFlagsType AugmentGmmFlags(GmmFlagsType f); inline void AccumDiagGmm::Resize(const DiagGmm &gmm, GmmFlagsType flags) { Resize(gmm.NumGauss(), gmm.Dim(), flags); } /// for computing the maximum-likelihood estimates of the parameters of /// a Gaussian mixture model. /// Update using the DiagGmm: exponential form. Sets, does not increment, /// objf_change_out, floored_elements_out and floored_gauss_out. void MleDiagGmmUpdate(const MleDiagGmmOptions &config, const AccumDiagGmm &diag_gmm_acc, GmmFlagsType flags, DiagGmm *gmm, BaseFloat *obj_change_out, BaseFloat *count_out, int32 *floored_elements_out = NULL, int32 *floored_gauss_out = NULL, int32 *removed_gauss_out = NULL); /// Maximum A Posteriori estimation of the model. void MapDiagGmmUpdate(const MapDiagGmmOptions &config, const AccumDiagGmm &diag_gmm_acc, GmmFlagsType flags, DiagGmm *gmm, BaseFloat *obj_change_out, BaseFloat *count_out); /// Calc using the DiagGMM exponential form BaseFloat MlObjective(const DiagGmm &gmm, const AccumDiagGmm &diaggmm_acc); } // End namespace kaldi #endif // KALDI_GMM_MLE_DIAG_GMM_H_ |