Blame view

src/gmm/model-test-common.cc 4.44 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  // gmm/model-test-common.cc
  
  // Copyright 2009-2011  Microsoft Corporation;  Jan Silovsky;
  //                      Saarland University
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <algorithm>
  #include <vector>
  
  #include "matrix/matrix-lib.h"
  #include "gmm/model-test-common.h"
  
  namespace kaldi {
  namespace unittest {
  
  void RandPosdefSpMatrix(int32 dim, SpMatrix<BaseFloat> *matrix,
                          TpMatrix<BaseFloat> *matrix_sqrt, BaseFloat *logdet) {
    // generate random (non-singular) matrix
    Matrix<BaseFloat> tmp(dim, dim);
    while (1) {
      tmp.SetRandn();
      if (tmp.Cond() < 100) break;
      KALDI_LOG << "Condition number of random matrix large "
                << static_cast<float>(tmp.Cond())
                << ", trying again (this is normal)
  ";
    }
    // tmp * tmp^T will give positive definite matrix
    matrix->AddMat2(1.0, tmp, kNoTrans, 0.0);
  
    if (matrix_sqrt != NULL) matrix_sqrt->Cholesky(*matrix);
    if (logdet != NULL) *logdet = matrix->LogPosDefDet();
    if ((matrix_sqrt == NULL) && (logdet == NULL)) {
      TpMatrix<BaseFloat> sqrt(dim);
      sqrt.Cholesky(*matrix);
    }
  }
  
  void RandDiagGaussFeatures(int32 num_samples,
                             const VectorBase<BaseFloat> &mean,
                             const VectorBase<BaseFloat> &sqrt_var,
                             MatrixBase<BaseFloat> *feats) {
    int32 dim = mean.Dim();
    KALDI_ASSERT(feats != NULL);
    KALDI_ASSERT(feats->NumRows() == num_samples &&
                 feats->NumCols() == dim);
    KALDI_ASSERT(sqrt_var.Dim() == dim);
  
    Vector<BaseFloat> rnd_vec(dim);
    for (int32 counter = 0; counter < num_samples; counter++) {
      for (int32 d = 0; d < dim; d++) {
        rnd_vec(d) = RandGauss();
      }
      feats->Row(counter).CopyFromVec(mean);
      feats->Row(counter).AddVecVec(1.0, sqrt_var, rnd_vec, 1.0);
    }
  }
  
  void RandFullGaussFeatures(int32 num_samples,
                             const VectorBase<BaseFloat> &mean,
                             const TpMatrix<BaseFloat> &sqrt_var,
                             MatrixBase<BaseFloat> *feats) {
    int32 dim = mean.Dim();
    KALDI_ASSERT(feats != NULL);
    KALDI_ASSERT(feats->NumRows() == num_samples && feats->NumCols() == dim);
    KALDI_ASSERT(sqrt_var.NumRows() == dim);
  
    Vector<BaseFloat> rnd_vec(dim);
    for (int32 counter = 0; counter < num_samples; counter++) {
      for (int32 d = 0; d < dim; d++) {
        rnd_vec(d) = RandGauss();
      }
      feats->Row(counter).CopyFromVec(mean);
      feats->Row(counter).AddTpVec(1.0, sqrt_var, kNoTrans, rnd_vec, 1.0);
    }
  }
  
  void InitRandDiagGmm(int32 dim, int32 num_comp, DiagGmm *gmm) {
    Vector<BaseFloat> weights(num_comp);
    Matrix<BaseFloat> means(num_comp, dim), inv_vars(num_comp, dim);
  
    for (int32 m = 0; m < num_comp; m++) {
      weights(m) = Exp(RandGauss());
      for (int32 d= 0; d < dim; d++) {
        means(m, d) = RandGauss() / (1 + d);
        inv_vars(m, d) = Exp(RandGauss() / (1 + d)) + 1e-2;
      }
    }
    weights.Scale(1.0 / weights.Sum());
  
    gmm->Resize(num_comp, dim);
    gmm->SetWeights(weights);
    gmm->SetInvVarsAndMeans(inv_vars, means);
    gmm->ComputeGconsts();
  }
  
  void InitRandFullGmm(int32 dim, int32 num_comp, FullGmm *gmm) {
    Vector<BaseFloat> weights(num_comp);
    Matrix<BaseFloat> means(num_comp, dim);
    std::vector< SpMatrix<BaseFloat> > invcovars(num_comp);
    for (int32 mix = 0; mix < num_comp; mix++) {
      invcovars[mix].Resize(dim);
    }
  
    BaseFloat tot_weight = 0.0;
    for (int32 m = 0; m < num_comp; m++) {
      weights(m) = RandUniform() + 1e-2;
      for (int32 d= 0; d < dim; d++) {
        means(m, d) = RandGauss();
      }
      RandPosdefSpMatrix(dim, &invcovars[m], NULL, NULL);
      invcovars[m].InvertDouble();
      tot_weight += weights(m);
    }
    weights.Scale(1/tot_weight);
  
    gmm->Resize(num_comp, dim);
    gmm->SetWeights(weights);
    gmm->SetInvCovarsAndMeans(invcovars, means);
    gmm->ComputeGconsts();
  }
  
  }  // End namespace unittests
  }  // End namespace kaldi