Blame view
src/gmmbin/gmm-acc-stats-twofeats.cc
6.22 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
// gmmbin/gmm-acc-stats-twofeats.cc // Copyright 2009-2011 Microsoft Corporation // 2014 Guoguo Chen // 2014 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "gmm/mle-am-diag-gmm.h" #include "hmm/posterior.h" int main(int argc, char *argv[]) { using namespace kaldi; try { const char *usage = "Accumulate stats for GMM training, computing posteriors with one set of features " "but accumulating statistics with another. " "First features are used to get posteriors, second to accumulate stats " "Usage: gmm-acc-stats-twofeats [options] <model-in> <feature1-rspecifier> <feature2-rspecifier> <posteriors-rspecifier> <stats-out> " "e.g.: " " gmm-acc-stats-twofeats 1.mdl 1.ali scp:train.scp scp:train_new.scp ark:1.ali 1.acc "; ParseOptions po(usage); bool binary = true; po.Register("binary", &binary, "Write output in binary mode"); po.Read(argc, argv); if (po.NumArgs() != 5) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), feature1_rspecifier = po.GetArg(2), feature2_rspecifier = po.GetArg(3), posteriors_rspecifier = po.GetArg(4), accs_wxfilename = po.GetArg(5); using namespace kaldi; typedef kaldi::int32 int32; AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary; Input ki(model_filename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } Vector<double> transition_accs; trans_model.InitStats(&transition_accs); int32 new_dim = 0; AccumAmDiagGmm gmm_accs; // will initialize once we know new_dim. double tot_like = 0.0; double tot_t = 0.0; SequentialBaseFloatMatrixReader feature1_reader(feature1_rspecifier); RandomAccessBaseFloatMatrixReader feature2_reader(feature2_rspecifier); RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier); int32 num_done = 0, num_no2ndfeats = 0, num_no_posterior = 0, num_other_error = 0; for (; !feature1_reader.Done(); feature1_reader.Next()) { std::string key = feature1_reader.Key(); if (!feature2_reader.HasKey(key)) { KALDI_WARN << "For utterance " << key << ", second features not present."; num_no2ndfeats ++; } else if (!posteriors_reader.HasKey(key)) { num_no_posterior++; } else { const Matrix<BaseFloat> &mat1 = feature1_reader.Value(); const Matrix<BaseFloat> &mat2 = feature2_reader.Value(key); KALDI_ASSERT(mat1.NumRows() == mat2.NumRows()); if (new_dim == 0) { new_dim = mat2.NumCols(); gmm_accs.Init(am_gmm, new_dim, kGmmAll); } const Posterior &posterior = posteriors_reader.Value(key); if (posterior.size() != mat1.NumRows()) { KALDI_WARN << "Posteriors has wrong size "<< (posterior.size()) << " vs. "<< (mat1.NumRows()); num_other_error++; continue; } if (mat1.NumRows() != mat2.NumRows()) { KALDI_WARN << "Features have mismatched numbers of frames " << mat1.NumRows() << " vs. " << mat2.NumRows(); num_other_error++; continue; } num_done++; BaseFloat tot_like_this_file = 0.0, tot_weight_this_file = 0.0; Posterior pdf_posterior; ConvertPosteriorToPdfs(trans_model, posterior, &pdf_posterior); for (size_t i = 0; i < posterior.size(); i++) { // Accumulates for GMM. for (size_t j = 0; j <pdf_posterior[i].size(); j++) { int32 pdf_id = pdf_posterior[i][j].first; BaseFloat weight = pdf_posterior[i][j].second; tot_like_this_file += weight * gmm_accs.AccumulateForGmmTwofeats(am_gmm, mat1.Row(i), mat2.Row(i), pdf_id, weight); tot_weight_this_file += weight; } // Accumulates for transitions. for (size_t j = 0; j < posterior[i].size(); j++) { int32 tid = posterior[i][j].first; BaseFloat weight = posterior[i][j].second; trans_model.Accumulate(weight, tid, &transition_accs); } } KALDI_LOG << "Average like for this file is " << (tot_like_this_file/tot_weight_this_file) << " over " << tot_weight_this_file <<" frames."; tot_like += tot_like_this_file; tot_t += tot_weight_this_file; if (num_done % 10 == 0) KALDI_LOG << "Avg like per frame so far is " << (tot_like/tot_t); } } KALDI_LOG << "Done " << num_done << " files, " << num_no_posterior << " with no posteriors, " << num_no2ndfeats << " with no second features, " << num_other_error << " with other errors."; KALDI_LOG << "Overall avg like per frame (Gaussian only) = " << (tot_like/tot_t) << " over " << tot_t << " frames."; { Output ko(accs_wxfilename, binary); transition_accs.Write(ko.Stream(), binary); gmm_accs.Write(ko.Stream(), binary); } KALDI_LOG << "Written accs."; if (num_done != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |