Blame view

src/gmmbin/gmm-acc-stats-twofeats.cc 6.22 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
  // gmmbin/gmm-acc-stats-twofeats.cc
  
  // Copyright 2009-2011  Microsoft Corporation
  //                2014  Guoguo Chen
  //                2014  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "gmm/am-diag-gmm.h"
  #include "hmm/transition-model.h"
  #include "gmm/mle-am-diag-gmm.h"
  #include "hmm/posterior.h"
  
  
  int main(int argc, char *argv[]) {
    using namespace kaldi;
    try {
      const char *usage =
          "Accumulate stats for GMM training, computing posteriors with one set of features
  "        
          "but accumulating statistics with another.
  "
          "First features are used to get posteriors, second to accumulate stats
  "        
          "Usage:  gmm-acc-stats-twofeats [options] <model-in> <feature1-rspecifier> <feature2-rspecifier> <posteriors-rspecifier> <stats-out>
  "
          "e.g.: 
  "
          " gmm-acc-stats-twofeats 1.mdl 1.ali scp:train.scp scp:train_new.scp ark:1.ali 1.acc
  ";
  
      ParseOptions po(usage);
      bool binary = true;
      po.Register("binary", &binary, "Write output in binary mode");
      po.Read(argc, argv);
  
      if (po.NumArgs() != 5) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string model_filename = po.GetArg(1),
          feature1_rspecifier = po.GetArg(2),
          feature2_rspecifier = po.GetArg(3),
          posteriors_rspecifier = po.GetArg(4),
          accs_wxfilename = po.GetArg(5);
  
      using namespace kaldi;
      typedef kaldi::int32 int32;
  
      AmDiagGmm am_gmm;
      TransitionModel trans_model;
      {
        bool binary;
        Input ki(model_filename, &binary);
        trans_model.Read(ki.Stream(), binary);
        am_gmm.Read(ki.Stream(), binary);
      }
  
      Vector<double> transition_accs;
      trans_model.InitStats(&transition_accs);
      int32 new_dim = 0;
      AccumAmDiagGmm gmm_accs;
      // will initialize once we know new_dim.
  
      double tot_like = 0.0;
      double tot_t = 0.0;
  
      SequentialBaseFloatMatrixReader feature1_reader(feature1_rspecifier);
      RandomAccessBaseFloatMatrixReader feature2_reader(feature2_rspecifier);
      RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier);
  
      int32 num_done = 0, num_no2ndfeats = 0, num_no_posterior = 0, num_other_error = 0;
      for (; !feature1_reader.Done(); feature1_reader.Next()) {
        std::string key = feature1_reader.Key();
        if (!feature2_reader.HasKey(key)) {
          KALDI_WARN << "For utterance " << key << ", second features not present.";
          num_no2ndfeats ++;
        } else if (!posteriors_reader.HasKey(key)) {
          num_no_posterior++;
        } else {
          const Matrix<BaseFloat> &mat1 = feature1_reader.Value();
          const Matrix<BaseFloat> &mat2 = feature2_reader.Value(key);
          KALDI_ASSERT(mat1.NumRows() == mat2.NumRows());
          if (new_dim == 0) {
            new_dim = mat2.NumCols();
            gmm_accs.Init(am_gmm, new_dim, kGmmAll);
          }
          const Posterior &posterior = posteriors_reader.Value(key);
  
          if (posterior.size() != mat1.NumRows()) {
            KALDI_WARN << "Posteriors has wrong size "<< (posterior.size()) << " vs. "<< (mat1.NumRows());
            num_other_error++;
            continue;
          }
          if (mat1.NumRows() != mat2.NumRows()) {
            KALDI_WARN << "Features have mismatched numbers of frames "
                       << mat1.NumRows() << " vs. " << mat2.NumRows();
            num_other_error++;
            continue;
          }
  
          num_done++;
          BaseFloat tot_like_this_file = 0.0,
              tot_weight_this_file = 0.0;
  
          Posterior pdf_posterior;
          ConvertPosteriorToPdfs(trans_model, posterior, &pdf_posterior);
          for (size_t i = 0; i < posterior.size(); i++) {
            // Accumulates for GMM.
            for (size_t j = 0; j <pdf_posterior[i].size(); j++) {
              int32 pdf_id = pdf_posterior[i][j].first;
              BaseFloat weight = pdf_posterior[i][j].second;
              tot_like_this_file += weight *
                  gmm_accs.AccumulateForGmmTwofeats(am_gmm,
                                                    mat1.Row(i),
                                                    mat2.Row(i),
                                                    pdf_id,
                                                    weight);
              tot_weight_this_file += weight;
            }
  
            // Accumulates for transitions.
            for (size_t j = 0; j < posterior[i].size(); j++) {
              int32 tid = posterior[i][j].first;
              BaseFloat weight = posterior[i][j].second;
              trans_model.Accumulate(weight, tid, &transition_accs);
            }
          }
          KALDI_LOG << "Average like for this file is "
                    << (tot_like_this_file/tot_weight_this_file) << " over "
                    << tot_weight_this_file <<" frames.";
          tot_like += tot_like_this_file;
          tot_t += tot_weight_this_file;
          if (num_done % 10 == 0)
            KALDI_LOG << "Avg like per frame so far is " << (tot_like/tot_t);
        }
      }
  
      KALDI_LOG << "Done " << num_done << " files, " << num_no_posterior
                << " with no posteriors, " << num_no2ndfeats
                << " with no second features, " << num_other_error
                << " with other errors.";
  
      KALDI_LOG << "Overall avg like per frame (Gaussian only) = "
                << (tot_like/tot_t) << " over " << tot_t << " frames.";
  
      {
        Output ko(accs_wxfilename, binary);
        transition_accs.Write(ko.Stream(), binary);
        gmm_accs.Write(ko.Stream(), binary);
      }
      KALDI_LOG << "Written accs.";
      if (num_done != 0) return 0;
      else return 1;
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }