Blame view
src/gmmbin/gmm-basis-fmllr-training.cc
2.77 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
// gmmbin/gmm-basis-fmllr-training.cc // Copyright 2012 Carnegie Mellon University (author: Yajie Miao) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <string> using std::string; #include <vector> using std::vector; #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "transform/fmllr-diag-gmm.h" #include "transform/basis-fmllr-diag-gmm.h" int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; using namespace kaldi; const char *usage = "Estimate fMLLR basis representation. Reads a set of gradient scatter " "accumulations. Outputs basis matrices. " "Usage: gmm-basis-fmllr-training [options] <model-in> <basis-wspecifier> " "<accs-in1> <accs-in2> ... "; bool binary_write = true; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Read(argc, argv); if (po.NumArgs() < 3) { po.PrintUsage(); exit(1); } string model_rxfilename = po.GetArg(1), basis_wspecifier = po.GetArg(2); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary; Input ki(model_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } BasisFmllrAccus basis_accs(am_gmm.Dim()); int num_accs = po.NumArgs() - 2; for (int i = 3, max = po.NumArgs(); i <= max; ++i) { std::string accs_in_filename = po.GetArg(i); bool binary_read; kaldi::Input ki(accs_in_filename, &binary_read); basis_accs.Read(ki.Stream(), binary_read, true /* add read values*/); } // Estimate the basis matrices BasisFmllrEstimate basis_est(am_gmm.Dim()); basis_est.EstimateFmllrBasis(am_gmm, basis_accs); WriteKaldiObject(basis_est, basis_wspecifier, binary_write); KALDI_LOG << "Summed " << num_accs << " gradient scatter stats"; KALDI_LOG << "Generate " << basis_est.BasisSize() << " bases, written to " << basis_wspecifier; return 0; } catch(const std::exception& e) { std::cerr << e.what(); return -1; } } |