Blame view
src/gmmbin/gmm-decode-simple.cc
6.59 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
// gmmbin/gmm-decode-simple.cc // Copyright 2009-2011 Microsoft Corporation // 2013 Johns Hopkins University // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "tree/context-dep.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "decoder/simple-decoder.h" #include "gmm/decodable-am-diag-gmm.h" #include "fstext/lattice-utils.h" #include "lat/kaldi-lattice.h" #include "base/timer.h" int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::Fst; using fst::StdArc; using fst::ReadFstKaldiGeneric; const char *usage = "Decode features using GMM-based model. " "Viterbi decoding, Only produces linear sequence; any lattice " "produced is linear " " " "Usage: gmm-decode-simple [options] <model-in> <fst-in> " "<features-rspecifier> <words-wspecifier> [<alignments-wspecifier>] " "[<lattice-wspecifier>]"; ParseOptions po(usage); Timer timer; bool allow_partial = true; BaseFloat acoustic_scale = 0.1; std::string word_syms_filename; BaseFloat beam = 16.0; po.Register("beam", &beam, "Decoding log-likelihood beam"); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("allow-partial", &allow_partial, "Produce output even when final state was not reached"); po.Read(argc, argv); if (po.NumArgs() < 4 || po.NumArgs() > 6) { po.PrintUsage(); exit(1); } std::string model_in_filename = po.GetArg(1), fst_in_filename = po.GetArg(2), feature_rspecifier = po.GetArg(3), words_wspecifier = po.GetArg(4), alignment_wspecifier = po.GetOptArg(5), lattice_wspecifier = po.GetOptArg(6); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } Fst<StdArc> *decode_fst = ReadFstKaldiGeneric(fst_in_filename); Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); CompactLatticeWriter clat_writer(lattice_wspecifier); fst::SymbolTable *word_syms = NULL; if (word_syms_filename != "") if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename))) KALDI_ERR << "Could not read symbol table from file " << word_syms_filename; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); BaseFloat tot_like = 0.0; kaldi::int64 frame_count = 0; int num_success = 0, num_fail = 0; SimpleDecoder decoder(*decode_fst, beam); for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); Matrix<BaseFloat> features (feature_reader.Value()); feature_reader.FreeCurrent(); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features, acoustic_scale); decoder.Decode(&gmm_decodable); VectorFst<LatticeArc> decoded; // linear FST. if ( (allow_partial || decoder.ReachedFinal()) && decoder.GetBestPath(&decoded) ) { if (!decoder.ReachedFinal()) KALDI_WARN << "Decoder did not reach end-state, " << "outputting partial traceback since --allow-partial=true"; num_success++; std::vector<int32> alignment; std::vector<int32> words; LatticeWeight weight; frame_count += features.NumRows(); GetLinearSymbolSequence(decoded, &alignment, &words, &weight); words_writer.Write(utt, words); if (alignment_wspecifier != "") alignment_writer.Write(utt, alignment); if (lattice_wspecifier != "") { // We'll write the lattice without acoustic scaling. if (acoustic_scale != 0.0) fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &decoded); fst::VectorFst<CompactLatticeArc> clat; ConvertLattice(decoded, &clat, true); clat_writer.Write(utt, clat); } if (word_syms != NULL) { std::cerr << utt << ' '; for (size_t i = 0; i < words.size(); i++) { std::string s = word_syms->Find(words[i]); if (s == "") KALDI_ERR << "Word-id " << words[i] <<" not in symbol table."; std::cerr << s << ' '; } std::cerr << ' '; } BaseFloat like = -ConvertToCost(weight); tot_like += like; KALDI_LOG << "Log-like per frame for utterance " << utt << " is " << (like / features.NumRows()) << " over " << features.NumRows() << " frames."; } else { num_fail++; KALDI_WARN << "Did not successfully decode utterance " << utt << ", len = " << features.NumRows(); } } double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken "<< elapsed << "s: real-time factor assuming 100 frames/sec is " << (elapsed*100.0/frame_count); KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail; KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<<" frames."; delete word_syms; delete decode_fst; if (num_success != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |