Blame view

src/gmmbin/gmm-est-fmllr-raw-gpost.cc 7.21 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
  // gmmbin/gmm-est-fmllr-raw-gpost.cc
  
  // Copyright 2013  Johns Hopkins University (author: Daniel Povey)
  //           2014  Guoguo Chen
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "base/kaldi-common.h"
  #include "transform/fmllr-raw.h"
  #include "gmm/am-diag-gmm.h"
  #include "hmm/transition-model.h"
  #include "util/common-utils.h"
  #include "hmm/posterior.h"
  
  namespace kaldi {
  
  
  void AccStatsForUtterance(const TransitionModel &trans_model,
                            const AmDiagGmm &am_gmm,
                            const GaussPost &gpost,
                            const Matrix<BaseFloat> &feats,
                            FmllrRawAccs *accs) {
    for (size_t t = 0; t < gpost.size(); t++) {
      for (size_t i = 0; i < gpost[t].size(); i++) {
        int32 pdf = gpost[t][i].first;
        const Vector<BaseFloat> &posterior(gpost[t][i].second);      
        accs->AccumulateFromPosteriors(am_gmm.GetPdf(pdf),
                                       feats.Row(t), posterior);
      }
    }
  }
  
  
  }
  
  int main(int argc, char *argv[]) {
    try {
      typedef kaldi::int32 int32;
      using namespace kaldi;
      const char *usage =
          "Estimate fMLLR transforms in the space before splicing and linear transforms
  "
          "such as LDA+MLLT, but using models in the space transformed by these transforms
  "
          "Requires the original spliced features, and the full LDA+MLLT (or similar) matrix
  "
          "including the 'rejected' rows (see the program get-full-lda-mat).  Reads in
  "
          "Gaussian-level posteriors.
  "
          "Usage: gmm-est-fmllr-raw-gpost [options] <model-in> <full-lda-mat-in> "
          "<feature-rspecifier> <gpost-rspecifier> <transform-wspecifier>
  ";
  
  
      int32 raw_feat_dim = 13;
      ParseOptions po(usage);
      FmllrRawOptions opts;
      std::string spk2utt_rspecifier;
      po.Register("spk2utt", &spk2utt_rspecifier, "rspecifier for speaker to "
                  "utterance-list map");
      po.Register("raw-feat-dim", &raw_feat_dim, "Dimension of raw features "
                  "prior to splicing");
      opts.Register(&po);
  
      po.Read(argc, argv);
  
      if (po.NumArgs() != 5) {
        po.PrintUsage();
        exit(1);
      }
      
      std::string model_rxfilename = po.GetArg(1),
          full_lda_mat_rxfilename = po.GetArg(2),
          feature_rspecifier = po.GetArg(3),
          gpost_rspecifier = po.GetArg(4),
          transform_wspecifier = po.GetArg(5);
  
      AmDiagGmm am_gmm;
      TransitionModel trans_model;
      {
        bool binary;
        Input ki(model_rxfilename, &binary);
        trans_model.Read(ki.Stream(), binary);
        am_gmm.Read(ki.Stream(), binary);
      }
  
      Matrix<BaseFloat> full_lda_mat;
      ReadKaldiObject(full_lda_mat_rxfilename, &full_lda_mat);
      
      RandomAccessGaussPostReader gpost_reader(gpost_rspecifier);
      BaseFloatMatrixWriter transform_writer(transform_wspecifier);
      
      double tot_auxf_impr = 0.0, tot_count = 0.0;
      
      int32 num_done = 0, num_err = 0;
      if (!spk2utt_rspecifier.empty()) { // Adapting per speaker
        SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier);
        RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
        
        for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) {
          FmllrRawAccs accs(raw_feat_dim, am_gmm.Dim(), full_lda_mat);
          std::string spk = spk2utt_reader.Key();
          const std::vector<std::string> &uttlist = spk2utt_reader.Value();
          for (size_t i = 0; i < uttlist.size(); i++) {
            std::string utt = uttlist[i];
            if (!feature_reader.HasKey(utt)) {
              KALDI_WARN << "Features not found for utterance " << utt;
              num_err++;
              continue;
            }
            if (!gpost_reader.HasKey(utt)) {
              KALDI_WARN << "Gaussian-level posteriors not found for utterance " << utt;
              num_err++;
              continue;
            }
            const Matrix<BaseFloat> &feats = feature_reader.Value(utt);
            const GaussPost &gpost = gpost_reader.Value(utt);
            if (static_cast<int32>(gpost.size()) != feats.NumRows()) {
              KALDI_WARN << "Size mismatch between gposteriors " << gpost.size()
                         << " and features " << feats.NumRows();
              num_err++;
              continue;
            }
  
            AccStatsForUtterance(trans_model, am_gmm, gpost, feats, &accs);
            num_done++;
          }
          
          BaseFloat auxf_impr, count;
          {
            Matrix<BaseFloat> transform(raw_feat_dim, raw_feat_dim + 1);
            transform.SetUnit();
            accs.Update(opts, &transform, &auxf_impr, &count);
            transform_writer.Write(spk, transform);
          }
          KALDI_LOG << "For speaker " << spk << ", auxf-impr from raw fMLLR is "
                    << (auxf_impr/count) << " over " << count << " frames.";
          tot_auxf_impr += auxf_impr;
          tot_count += count;
        }
      } else {  // --spk2utt option not given -> adapt per utterance.
        SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
        for (; !feature_reader.Done(); feature_reader.Next()) {
          std::string utt = feature_reader.Key();
          if (!gpost_reader.HasKey(utt)) {
            KALDI_WARN << "Gaussian-level posteriors not found for utterance " << utt;
            num_err++;
            continue;
          }
          const Matrix<BaseFloat> &feats = feature_reader.Value();
          const GaussPost &gpost = gpost_reader.Value(utt);
  
          if (static_cast<int32>(gpost.size()) != feats.NumRows()) {
            KALDI_WARN << "Size mismatch between posteriors " << gpost.size()
                       << " and features " << feats.NumRows();
            num_err++;
            continue;
          }
  
          FmllrRawAccs accs(raw_feat_dim, am_gmm.Dim(), full_lda_mat);
  
          AccStatsForUtterance(trans_model, am_gmm, gpost, feats, &accs);
          
          BaseFloat auxf_impr, count;        
          {
            Matrix<BaseFloat> transform(raw_feat_dim, raw_feat_dim + 1);
            transform.SetUnit();
            accs.Update(opts, &transform, &auxf_impr, &count);
            transform_writer.Write(utt, transform);
          }
          KALDI_LOG << "For utterance " << utt << ", auxf-impr from raw fMLLR is "
                    << (auxf_impr/count) << " over " << count << " frames.";
          tot_auxf_impr += auxf_impr;
          tot_count += count;
          num_done++;
        }
      }
  
      KALDI_LOG << "Processed " << num_done << " utterances, "
                << num_err << " had errors.";
      KALDI_LOG << "Overall raw-fMLLR auxf impr per frame is "
                << (tot_auxf_impr / tot_count) << " over " << tot_count
                << " frames.";
      return (num_done != 0 ? 0 : 1);
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }