Blame view
src/gmmbin/gmm-est-fmllr-raw-gpost.cc
7.21 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
// gmmbin/gmm-est-fmllr-raw-gpost.cc // Copyright 2013 Johns Hopkins University (author: Daniel Povey) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "transform/fmllr-raw.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "util/common-utils.h" #include "hmm/posterior.h" namespace kaldi { void AccStatsForUtterance(const TransitionModel &trans_model, const AmDiagGmm &am_gmm, const GaussPost &gpost, const Matrix<BaseFloat> &feats, FmllrRawAccs *accs) { for (size_t t = 0; t < gpost.size(); t++) { for (size_t i = 0; i < gpost[t].size(); i++) { int32 pdf = gpost[t][i].first; const Vector<BaseFloat> &posterior(gpost[t][i].second); accs->AccumulateFromPosteriors(am_gmm.GetPdf(pdf), feats.Row(t), posterior); } } } } int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; using namespace kaldi; const char *usage = "Estimate fMLLR transforms in the space before splicing and linear transforms " "such as LDA+MLLT, but using models in the space transformed by these transforms " "Requires the original spliced features, and the full LDA+MLLT (or similar) matrix " "including the 'rejected' rows (see the program get-full-lda-mat). Reads in " "Gaussian-level posteriors. " "Usage: gmm-est-fmllr-raw-gpost [options] <model-in> <full-lda-mat-in> " "<feature-rspecifier> <gpost-rspecifier> <transform-wspecifier> "; int32 raw_feat_dim = 13; ParseOptions po(usage); FmllrRawOptions opts; std::string spk2utt_rspecifier; po.Register("spk2utt", &spk2utt_rspecifier, "rspecifier for speaker to " "utterance-list map"); po.Register("raw-feat-dim", &raw_feat_dim, "Dimension of raw features " "prior to splicing"); opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 5) { po.PrintUsage(); exit(1); } std::string model_rxfilename = po.GetArg(1), full_lda_mat_rxfilename = po.GetArg(2), feature_rspecifier = po.GetArg(3), gpost_rspecifier = po.GetArg(4), transform_wspecifier = po.GetArg(5); AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary; Input ki(model_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } Matrix<BaseFloat> full_lda_mat; ReadKaldiObject(full_lda_mat_rxfilename, &full_lda_mat); RandomAccessGaussPostReader gpost_reader(gpost_rspecifier); BaseFloatMatrixWriter transform_writer(transform_wspecifier); double tot_auxf_impr = 0.0, tot_count = 0.0; int32 num_done = 0, num_err = 0; if (!spk2utt_rspecifier.empty()) { // Adapting per speaker SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { FmllrRawAccs accs(raw_feat_dim, am_gmm.Dim(), full_lda_mat); std::string spk = spk2utt_reader.Key(); const std::vector<std::string> &uttlist = spk2utt_reader.Value(); for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Features not found for utterance " << utt; num_err++; continue; } if (!gpost_reader.HasKey(utt)) { KALDI_WARN << "Gaussian-level posteriors not found for utterance " << utt; num_err++; continue; } const Matrix<BaseFloat> &feats = feature_reader.Value(utt); const GaussPost &gpost = gpost_reader.Value(utt); if (static_cast<int32>(gpost.size()) != feats.NumRows()) { KALDI_WARN << "Size mismatch between gposteriors " << gpost.size() << " and features " << feats.NumRows(); num_err++; continue; } AccStatsForUtterance(trans_model, am_gmm, gpost, feats, &accs); num_done++; } BaseFloat auxf_impr, count; { Matrix<BaseFloat> transform(raw_feat_dim, raw_feat_dim + 1); transform.SetUnit(); accs.Update(opts, &transform, &auxf_impr, &count); transform_writer.Write(spk, transform); } KALDI_LOG << "For speaker " << spk << ", auxf-impr from raw fMLLR is " << (auxf_impr/count) << " over " << count << " frames."; tot_auxf_impr += auxf_impr; tot_count += count; } } else { // --spk2utt option not given -> adapt per utterance. SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); if (!gpost_reader.HasKey(utt)) { KALDI_WARN << "Gaussian-level posteriors not found for utterance " << utt; num_err++; continue; } const Matrix<BaseFloat> &feats = feature_reader.Value(); const GaussPost &gpost = gpost_reader.Value(utt); if (static_cast<int32>(gpost.size()) != feats.NumRows()) { KALDI_WARN << "Size mismatch between posteriors " << gpost.size() << " and features " << feats.NumRows(); num_err++; continue; } FmllrRawAccs accs(raw_feat_dim, am_gmm.Dim(), full_lda_mat); AccStatsForUtterance(trans_model, am_gmm, gpost, feats, &accs); BaseFloat auxf_impr, count; { Matrix<BaseFloat> transform(raw_feat_dim, raw_feat_dim + 1); transform.SetUnit(); accs.Update(opts, &transform, &auxf_impr, &count); transform_writer.Write(utt, transform); } KALDI_LOG << "For utterance " << utt << ", auxf-impr from raw fMLLR is " << (auxf_impr/count) << " over " << count << " frames."; tot_auxf_impr += auxf_impr; tot_count += count; num_done++; } } KALDI_LOG << "Processed " << num_done << " utterances, " << num_err << " had errors."; KALDI_LOG << "Overall raw-fMLLR auxf impr per frame is " << (tot_auxf_impr / tot_count) << " over " << tot_count << " frames."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |