Blame view
src/gmmbin/gmm-global-est-fmllr.cc
8.06 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
// gmmbin/gmm-global-est-fmllr.cc // Copyright 2009-2011 Microsoft Corporation; Saarland University // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <string> using std::string; #include <vector> using std::vector; #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "transform/fmllr-diag-gmm.h" namespace kaldi { bool AccumulateForUtterance(const Matrix<BaseFloat> &feats, const DiagGmm &gmm, const std::string &key, RandomAccessBaseFloatVectorReader *weights_reader, RandomAccessInt32VectorVectorReader *gselect_reader, AccumFullGmm *fullcov_stats) { Vector<BaseFloat> weights; if (weights_reader->IsOpen()) { if (!weights_reader->HasKey(key)) { KALDI_WARN << "No weights present for utterance " << key; return false; } weights = weights_reader->Value(key); } int32 num_frames = feats.NumRows(); if (gselect_reader->IsOpen()) { if (!gselect_reader->HasKey(key)) { KALDI_WARN << "No gselect information present for utterance " << key; return false; } const std::vector<std::vector<int32> > &gselect(gselect_reader->Value(key)); if (gselect.size() != num_frames) { KALDI_WARN << "gselect information has wrong size for utterance " << key; return false; } for (int32 t = 0; t < num_frames; t++) { const std::vector<int32> &this_gselect(gselect[t]); BaseFloat weight = (weights.Dim() != 0 ? weights(t) : 1.0); if (weight != 0.0) { Vector<BaseFloat> post(this_gselect.size()); gmm.LogLikelihoodsPreselect(feats.Row(t), this_gselect, &post); post.ApplySoftMax(); // get posteriors. post.Scale(weight); // scale by the weight for this frame. for (size_t i = 0; i < this_gselect.size(); i++) fullcov_stats->AccumulateForComponent(feats.Row(t), this_gselect[i], post(i)); } } } else { for (int32 t = 0; t < num_frames; t++) { BaseFloat weight = (weights.Dim() != 0 ? weights(t) : 1.0); if (weight != 0.0) fullcov_stats->AccumulateFromDiag(gmm, feats.Row(t), weight); } } return true; } } int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; using namespace kaldi; const char *usage = "Estimate global fMLLR transforms, either per utterance or for the supplied " "set of speakers (spk2utt option). Reads features, and (with --weights option) " "weights for each frame (also see --gselect option) " "Usage: gmm-global-est-fmllr [options] <gmm-in> <feature-rspecifier> <transform-wspecifier> "; ParseOptions po(usage); FmllrOptions fmllr_opts; string spk2utt_rspecifier, gselect_rspecifier, weights_rspecifier, alignment_model; po.Register("spk2utt", &spk2utt_rspecifier, "rspecifier for speaker to " "utterance-list map"); po.Register("gselect", &gselect_rspecifier, "rspecifier for gselect objects " "to limit the #Gaussians accessed on each frame."); po.Register("weights", &weights_rspecifier, "rspecifier for a vector of floats " "for each utterance, that's a per-frame weight."); po.Register("align-model", &alignment_model, "rxfilename for a model in the " "speaker-independent space, to get Gaussian alignments from"); fmllr_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } string gmm_rxfilename = po.GetArg(1), feature_rspecifier = po.GetArg(2), trans_wspecifier = po.GetArg(3); DiagGmm gmm; ReadKaldiObject(gmm_rxfilename, &gmm); DiagGmm ali_gmm_read; if (alignment_model != "") { bool binary; Input ki(gmm_rxfilename, &binary); ali_gmm_read.Read(ki.Stream(), binary); } DiagGmm &ali_gmm = (alignment_model != "" ? ali_gmm_read : gmm); RandomAccessBaseFloatVectorReader weights_reader(weights_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); double tot_impr = 0.0, tot_t = 0.0; BaseFloatMatrixWriter transform_writer(trans_wspecifier); int32 num_done = 0, num_err = 0; if (spk2utt_rspecifier != "") { // per-speaker adaptation SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { AccumFullGmm fullcov_stats(gmm.NumGauss(), gmm.Dim(), kGmmAll); string spk = spk2utt_reader.Key(); const vector<string> &uttlist = spk2utt_reader.Value(); for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Did not find features for utterance " << utt; continue; } const Matrix<BaseFloat> &feats = feature_reader.Value(utt); if (AccumulateForUtterance(feats, ali_gmm, utt, &weights_reader, &gselect_reader, &fullcov_stats)) num_done++; else num_err++; } // end looping over all utterances of the current speaker BaseFloat impr, spk_tot_t; { // Compute the transform and write it out. Matrix<BaseFloat> transform(gmm.Dim(), gmm.Dim()+1); transform.SetUnit(); FmllrDiagGmmAccs spk_stats(gmm, fullcov_stats); spk_stats.Update(fmllr_opts, &transform, &impr, &spk_tot_t); transform_writer.Write(spk, transform); } KALDI_LOG << "For speaker " << spk << ", auxf-impr from fMLLR is " << (impr/spk_tot_t) << ", over " << spk_tot_t << " frames."; tot_impr += impr; tot_t += spk_tot_t; } // end looping over speakers } else { // per-utterance adaptation SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { string utt = feature_reader.Key(); const Matrix<BaseFloat> &feats = feature_reader.Value(); AccumFullGmm fullcov_stats(gmm.NumGauss(), gmm.Dim(), kGmmAll); if (AccumulateForUtterance(feats, ali_gmm, utt, &weights_reader, &gselect_reader, &fullcov_stats)) { BaseFloat impr, utt_tot_t; { // Compute the transform and write it out. Matrix<BaseFloat> transform(gmm.Dim(), gmm.Dim()+1); transform.SetUnit(); FmllrDiagGmmAccs spk_stats(gmm, fullcov_stats); spk_stats.Update(fmllr_opts, &transform, &impr, &utt_tot_t); transform_writer.Write(utt, transform); } KALDI_LOG << "For utterance " << utt << ", auxf-impr from fMLLR is " << (impr/utt_tot_t) << ", over " << utt_tot_t << " frames."; tot_impr += impr; tot_t += utt_tot_t; num_done++; } else num_err++; } } KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors."; KALDI_LOG << "Overall fMLLR auxf impr per frame is " << (tot_impr / tot_t) << " over " << tot_t << " frames."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |