Blame view

src/gmmbin/gmm-global-est-fmllr.cc 8.06 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
  // gmmbin/gmm-global-est-fmllr.cc
  
  // Copyright 2009-2011  Microsoft Corporation;  Saarland University
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <string>
  using std::string;
  #include <vector>
  using std::vector;
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "gmm/am-diag-gmm.h"
  #include "hmm/transition-model.h"
  #include "transform/fmllr-diag-gmm.h"
  
  namespace kaldi {
  bool AccumulateForUtterance(const Matrix<BaseFloat> &feats,
                              const DiagGmm &gmm,
                              const std::string &key,
                              RandomAccessBaseFloatVectorReader *weights_reader,
                              RandomAccessInt32VectorVectorReader *gselect_reader,
                              AccumFullGmm *fullcov_stats) {
    Vector<BaseFloat> weights;
    if (weights_reader->IsOpen()) {
      if (!weights_reader->HasKey(key)) {
        KALDI_WARN << "No weights present for utterance " << key;
        return false;
      }
      weights = weights_reader->Value(key);
    }
    int32 num_frames = feats.NumRows();
    if (gselect_reader->IsOpen()) {
      if (!gselect_reader->HasKey(key)) {
        KALDI_WARN << "No gselect information present for utterance " << key;
        return false;
      }
      const std::vector<std::vector<int32> > &gselect(gselect_reader->Value(key));
      if (gselect.size() != num_frames) {
        KALDI_WARN << "gselect information has wrong size for utterance " << key;
        return false;
      }
      for (int32 t = 0; t < num_frames; t++) {
        const std::vector<int32> &this_gselect(gselect[t]);
        BaseFloat weight = (weights.Dim() != 0 ? weights(t) : 1.0);
        if (weight != 0.0) {
          Vector<BaseFloat> post(this_gselect.size());
          gmm.LogLikelihoodsPreselect(feats.Row(t), this_gselect, &post);
          post.ApplySoftMax(); // get posteriors.
          post.Scale(weight); // scale by the weight for this frame.
          for (size_t i = 0; i < this_gselect.size(); i++)
            fullcov_stats->AccumulateForComponent(feats.Row(t),
                                                  this_gselect[i], post(i));
        }
      }
    } else {
      for (int32 t = 0; t < num_frames; t++) {
        BaseFloat weight = (weights.Dim() != 0 ? weights(t) : 1.0);
        if (weight != 0.0)
          fullcov_stats->AccumulateFromDiag(gmm, feats.Row(t), weight);
      }
    }
    return true;
  }
        
  
  }
  
  int main(int argc, char *argv[]) {
    try {
      typedef kaldi::int32 int32;
      using namespace kaldi;
      const char *usage =
          "Estimate global fMLLR transforms, either per utterance or for the supplied
  "
          "set of speakers (spk2utt option).  Reads features, and (with --weights option)
  "
          "weights for each frame (also see --gselect option)
  "
          "Usage: gmm-global-est-fmllr [options] <gmm-in> <feature-rspecifier> <transform-wspecifier>
  ";
  
      ParseOptions po(usage);
      FmllrOptions fmllr_opts;
      string spk2utt_rspecifier, gselect_rspecifier, weights_rspecifier,
          alignment_model;
          
  
      po.Register("spk2utt", &spk2utt_rspecifier, "rspecifier for speaker to "
                  "utterance-list map");
      po.Register("gselect", &gselect_rspecifier, "rspecifier for gselect objects "
                  "to limit the #Gaussians accessed on each frame.");
      po.Register("weights", &weights_rspecifier, "rspecifier for a vector of floats "
                  "for each utterance, that's a per-frame weight.");
      po.Register("align-model", &alignment_model, "rxfilename for a model in the "
                  "speaker-independent space, to get Gaussian alignments from");
      
      fmllr_opts.Register(&po);
  
      po.Read(argc, argv);
  
      if (po.NumArgs() != 3) {
        po.PrintUsage();
        exit(1);
      }
  
      string gmm_rxfilename = po.GetArg(1),
          feature_rspecifier = po.GetArg(2),
          trans_wspecifier = po.GetArg(3);
  
      DiagGmm gmm;
      ReadKaldiObject(gmm_rxfilename, &gmm);
      DiagGmm ali_gmm_read;
      if (alignment_model != "") {
        bool binary;
        Input ki(gmm_rxfilename, &binary);
        ali_gmm_read.Read(ki.Stream(), binary);
      }
      DiagGmm &ali_gmm = (alignment_model != "" ? ali_gmm_read : gmm);
      
      RandomAccessBaseFloatVectorReader weights_reader(weights_rspecifier);
      RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier);
  
      double tot_impr = 0.0, tot_t = 0.0;
  
      BaseFloatMatrixWriter transform_writer(trans_wspecifier);
  
      int32 num_done = 0, num_err = 0;
  
      if (spk2utt_rspecifier != "") {  // per-speaker adaptation
        SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier);
        RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
  
        for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) {
          AccumFullGmm fullcov_stats(gmm.NumGauss(), gmm.Dim(), kGmmAll);
          string spk = spk2utt_reader.Key();
          const vector<string> &uttlist = spk2utt_reader.Value();
          for (size_t i = 0; i < uttlist.size(); i++) {
            std::string utt = uttlist[i];
            if (!feature_reader.HasKey(utt)) {
              KALDI_WARN << "Did not find features for utterance " << utt;
              continue;
            }
            const Matrix<BaseFloat> &feats = feature_reader.Value(utt);
  
            if (AccumulateForUtterance(feats, ali_gmm, utt, &weights_reader,
                                       &gselect_reader, &fullcov_stats)) num_done++;
            else num_err++;
          }  // end looping over all utterances of the current speaker
          
          BaseFloat impr, spk_tot_t;
          {  // Compute the transform and write it out.
            Matrix<BaseFloat> transform(gmm.Dim(), gmm.Dim()+1);
            transform.SetUnit();
            FmllrDiagGmmAccs spk_stats(gmm, fullcov_stats);
            spk_stats.Update(fmllr_opts, &transform, &impr, &spk_tot_t);
            transform_writer.Write(spk, transform);
          }
          KALDI_LOG << "For speaker " << spk << ", auxf-impr from fMLLR is "
                    << (impr/spk_tot_t) << ", over " << spk_tot_t << " frames.";
          tot_impr += impr;
          tot_t += spk_tot_t;
        }  // end looping over speakers
      } else {  // per-utterance adaptation
        SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
        for (; !feature_reader.Done(); feature_reader.Next()) {
          string utt = feature_reader.Key();
  
          const Matrix<BaseFloat> &feats = feature_reader.Value();
  
          AccumFullGmm fullcov_stats(gmm.NumGauss(), gmm.Dim(), kGmmAll);
  
          if (AccumulateForUtterance(feats, ali_gmm, utt, &weights_reader,
                                     &gselect_reader, &fullcov_stats)) {
            BaseFloat impr, utt_tot_t;
            {  // Compute the transform and write it out.
              Matrix<BaseFloat> transform(gmm.Dim(), gmm.Dim()+1);
              transform.SetUnit();
              FmllrDiagGmmAccs spk_stats(gmm, fullcov_stats);
              spk_stats.Update(fmllr_opts, &transform, &impr, &utt_tot_t);
              transform_writer.Write(utt, transform);
            }
            KALDI_LOG << "For utterance " << utt << ", auxf-impr from fMLLR is "
                      << (impr/utt_tot_t) << ", over " << utt_tot_t << " frames.";
            tot_impr += impr;
            tot_t += utt_tot_t;
            num_done++;
          } else num_err++;
          
        }
      }
  
      KALDI_LOG << "Done " << num_done << " files, " << num_err
                << " with errors.";
      KALDI_LOG << "Overall fMLLR auxf impr per frame is "
                << (tot_impr / tot_t) << " over " << tot_t << " frames.";
      return (num_done != 0 ? 0 : 1);
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }