Blame view
src/gmmbin/gmm-gselect.cc
5.36 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
// gmmbin/gmm-gselect.cc // Copyright 2009-2011 Saarland University; Microsoft Corporation // 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/diag-gmm.h" #include "hmm/transition-model.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using std::vector; typedef kaldi::int32 int32; const char *usage = "Precompute Gaussian indices for pruning " " (e.g. in training UBMs, SGMMs, tied-mixture systems) " " For each frame, gives a list of the n best Gaussian indices, " " sorted from best to worst. " "See also: gmm-global-get-post, fgmm-global-gselect-to-post, " "copy-gselect, fgmm-gselect " "Usage: gmm-gselect [options] <model-in> <feature-rspecifier> <gselect-wspecifier> " "The --gselect option (which takes an rspecifier) limits selection to a subset " "of indices: " "e.g.: gmm-gselect \"--gselect=ark:gunzip -c bigger.gselect.gz|\" --n=20 1.gmm \"ark:feature-command |\" \"ark,t:|gzip -c >gselect.1.gz\" "; ParseOptions po(usage); int32 num_gselect = 50; std::string gselect_rspecifier; std::string likelihood_wspecifier; po.Register("n", &num_gselect, "Number of Gaussians to keep per frame "); po.Register("write-likes", &likelihood_wspecifier, "rspecifier for likelihoods per " "utterance"); po.Register("gselect", &gselect_rspecifier, "rspecifier for gselect objects " "to limit the search to"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), gselect_wspecifier = po.GetArg(3); DiagGmm gmm; ReadKaldiObject(model_filename, &gmm); KALDI_ASSERT(num_gselect > 0); int32 num_gauss = gmm.NumGauss(); if (num_gselect > num_gauss) { KALDI_WARN << "You asked for " << num_gselect << " Gaussians but GMM " << "only has " << num_gauss << ", returning this many. " << "Note: this means the Gaussian selection is pointless."; num_gselect = num_gauss; } double tot_like = 0.0; kaldi::int64 tot_t = 0; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); Int32VectorVectorWriter gselect_writer(gselect_wspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); // may be "" BaseFloatWriter likelihood_writer(likelihood_wspecifier); // may be "" int32 num_done = 0, num_err = 0; for (; !feature_reader.Done(); feature_reader.Next()) { int32 tot_t_this_file = 0; double tot_like_this_file = 0; std::string utt = feature_reader.Key(); const Matrix<BaseFloat> &mat = feature_reader.Value(); vector<vector<int32> > gselect(mat.NumRows()); tot_t_this_file += mat.NumRows(); if(gselect_rspecifier != "") { // Limit Gaussians to preselected group... if (!gselect_reader.HasKey(utt)) { KALDI_WARN << "No gselect information for utterance " << utt; num_err++; continue; } const vector<vector<int32> > &preselect = gselect_reader.Value(utt); if (preselect.size() != static_cast<size_t>(mat.NumRows())) { KALDI_WARN << "Input gselect for utterance " << utt << " has wrong size " << preselect.size() << " vs. " << mat.NumRows(); num_err++; continue; } for (int32 i = 0; i < mat.NumRows(); i++) tot_like_this_file += gmm.GaussianSelectionPreselect(mat.Row(i), preselect[i], num_gselect, &(gselect[i])); } else { // No "preselect" [i.e. no existing gselect]: simple case. tot_like_this_file = gmm.GaussianSelection(mat, num_gselect, &gselect); } gselect_writer.Write(utt, gselect); if (num_done % 10 == 0) KALDI_LOG << "For " << num_done << "'th file, average UBM likelihood over " << tot_t_this_file << " frames is " << (tot_like_this_file/tot_t_this_file); tot_t += tot_t_this_file; tot_like += tot_like_this_file; if(likelihood_wspecifier != "") likelihood_writer.Write(utt, tot_like_this_file); num_done++; } KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors, average UBM log-likelihood is " << (tot_like/tot_t) << " over " << tot_t << " frames."; if (num_done != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |