Blame view
src/gmmbin/gmm-init-model-flat.cc
4.63 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
// gmmbin/gmm-init-model-flat.cc // Copyright 2012 Johns Hopkins University (Author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "gmm/mle-am-diag-gmm.h" #include "tree/build-tree-utils.h" #include "tree/context-dep.h" #include "tree/clusterable-classes.h" #include "util/text-utils.h" namespace kaldi { void GetFeatureMeanAndVariance(const std::string &feat_rspecifier, Vector<BaseFloat> *inv_var_out, Vector<BaseFloat> *mean_out) { double count = 0.0; Vector<double> x_stats, x2_stats; SequentialDoubleMatrixReader feat_reader(feat_rspecifier); for (; !feat_reader.Done(); feat_reader.Next()) { const Matrix<double> &mat = feat_reader.Value(); if (x_stats.Dim() == 0) { int32 dim = mat.NumCols(); x_stats.Resize(dim); x2_stats.Resize(dim); } for (int32 i = 0; i < mat.NumRows(); i++) { count += 1.0; x_stats.AddVec(1.0, mat.Row(i)); x2_stats.AddVec2(1.0, mat.Row(i)); } } if (count == 0) { KALDI_ERR << "No features were read!"; } x_stats.Scale(1.0/count); x2_stats.Scale(1.0/count); x2_stats.AddVec2(-1.0, x_stats); if (x2_stats.Min() <= 0.0) KALDI_ERR << "Variance is zero or negative!"; x2_stats.InvertElements(); int32 dim = x_stats.Dim(); inv_var_out->Resize(dim); mean_out->Resize(dim); inv_var_out->CopyFromVec(x2_stats); mean_out->CopyFromVec(x_stats); } } int main(int argc, char *argv[]) { using namespace kaldi; try { using namespace kaldi; typedef kaldi::int32 int32; const char *usage = "Initialize GMM, with Gaussians initialized to mean and variance " "of some provided example data (or to 0,1 if not provided: in that " "case, provide --dim option) " "Usage: gmm-init-model-flat [options] <tree-in> <topo-file> <model-out> [<features-rspecifier>] " "e.g.: " " gmm-init-model-flat tree topo 1.mdl ark:feats.scp "; bool binary = true; int32 dim = 40; ParseOptions po(usage); po.Register("binary", &binary, "Write output in binary mode"); po.Register("dim", &dim, "Dimension of model (this matters only if not providing features)."); po.Read(argc, argv); if (po.NumArgs() < 3 || po.NumArgs() > 4) { po.PrintUsage(); exit(1); } std::string tree_filename = po.GetArg(1), topo_filename = po.GetArg(2), model_out_filename = po.GetArg(3), feats_rspecifier = po.GetOptArg(4); ContextDependency ctx_dep; ReadKaldiObject(tree_filename, &ctx_dep); HmmTopology topo; ReadKaldiObject(topo_filename, &topo); Vector<BaseFloat> global_inverse_var, global_mean; if (po.NumArgs() == 4) { GetFeatureMeanAndVariance(feats_rspecifier, &global_inverse_var, &global_mean); dim = global_mean.Dim(); } else { global_inverse_var.Resize(dim); global_inverse_var.Set(1.0); global_mean.Resize(dim); // leave it at zero. } int32 num_pdfs = ctx_dep.NumPdfs(); AmDiagGmm am_gmm; DiagGmm gmm; gmm.Resize(1, dim); { // Initialize the gmm. Matrix<BaseFloat> inv_var(1, dim); inv_var.Row(0).CopyFromVec(global_inverse_var); Matrix<BaseFloat> mu(1, dim); mu.Row(0).CopyFromVec(global_mean); Vector<BaseFloat> weights(1); weights.Set(1.0); gmm.SetInvVarsAndMeans(inv_var, mu); gmm.SetWeights(weights); gmm.ComputeGconsts(); } for (int i = 0; i < num_pdfs; i++) am_gmm.AddPdf(gmm); TransitionModel trans_model(ctx_dep, topo); { Output ko(model_out_filename, binary); trans_model.Write(ko.Stream(), binary); am_gmm.Write(ko.Stream(), binary); } KALDI_LOG << "Wrote model."; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |