Blame view

src/gmmbin/gmm-init-mono.cc 6.08 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
  // gmmbin/gmm-init-mono.cc
  
  // Copyright 2009-2011  Microsoft Corporation
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "gmm/am-diag-gmm.h"
  #include "hmm/hmm-topology.h"
  #include "hmm/transition-model.h"
  #include "tree/context-dep.h"
  
  namespace kaldi {
  // This function reads a file like:
  // 1 2 3
  // 4 5
  // 6 7 8
  // where each line is a list of integer id's of phones (that should have their pdfs shared).
  void ReadSharedPhonesList(std::string rxfilename, std::vector<std::vector<int32> > *list_out) {
    list_out->clear();
    Input input(rxfilename);
    std::istream &is = input.Stream();
    std::string line;
    while (std::getline(is, line)) {
      list_out->push_back(std::vector<int32>());
      if (!SplitStringToIntegers(line, " \t\r", true, &(list_out->back())))
        KALDI_ERR << "Bad line in shared phones list: " << line << " (reading "
                  << PrintableRxfilename(rxfilename) << ")";
      std::sort(list_out->rbegin()->begin(), list_out->rbegin()->end());
      if (!IsSortedAndUniq(*(list_out->rbegin())))
        KALDI_ERR << "Bad line in shared phones list (repeated phone): " << line
                  << " (reading " << PrintableRxfilename(rxfilename) << ")";
    }
  }
  
  } // end namespace kaldi
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      using kaldi::int32;
  
      const char *usage =
          "Initialize monophone GMM.
  "
          "Usage:  gmm-init-mono <topology-in> <dim> <model-out> <tree-out> 
  "
          "e.g.: 
  "
          " gmm-init-mono topo 39 mono.mdl mono.tree
  ";
  
      bool binary = true;
      std::string train_feats;
      std::string shared_phones_rxfilename;
      BaseFloat perturb_factor = 0.0;
      ParseOptions po(usage);
      po.Register("binary", &binary, "Write output in binary mode");
      po.Register("train-feats", &train_feats,
                  "rspecifier for training features [used to set mean and variance]");
      po.Register("shared-phones", &shared_phones_rxfilename,
                  "rxfilename containing, on each line, a list of phones whose pdfs should be shared.");
      po.Register("perturb-factor", &perturb_factor,
                  "Perturb the means using this fraction of standard deviation.");
      po.Read(argc, argv);
  
      if (po.NumArgs() != 4) {
        po.PrintUsage();
        exit(1);
      }
  
  
      std::string topo_filename = po.GetArg(1);
      int dim = atoi(po.GetArg(2).c_str());
      KALDI_ASSERT(dim> 0 && dim < 10000);
      std::string model_filename = po.GetArg(3);
      std::string tree_filename = po.GetArg(4);
  
      Vector<BaseFloat> glob_inv_var(dim);
      glob_inv_var.Set(1.0);
      Vector<BaseFloat> glob_mean(dim);
      glob_mean.Set(1.0);
  
      if (train_feats != "") {
        double count = 0.0;
        Vector<double> var_stats(dim);
        Vector<double> mean_stats(dim);
        SequentialDoubleMatrixReader feat_reader(train_feats);
        for (; !feat_reader.Done(); feat_reader.Next()) {
          const Matrix<double> &mat = feat_reader.Value();
          for (int32 i = 0; i < mat.NumRows(); i++) {
            count += 1.0;
            var_stats.AddVec2(1.0, mat.Row(i));
            mean_stats.AddVec(1.0, mat.Row(i));
          }
        }
        if (count == 0) { KALDI_ERR << "no features were seen."; }
        var_stats.Scale(1.0/count);
        mean_stats.Scale(1.0/count);
        var_stats.AddVec2(-1.0, mean_stats);
        if (var_stats.Min() <= 0.0)
          KALDI_ERR << "bad variance";
        var_stats.InvertElements();
        glob_inv_var.CopyFromVec(var_stats);
        glob_mean.CopyFromVec(mean_stats);
      }
  
      HmmTopology topo;
      bool binary_in;
      Input ki(topo_filename, &binary_in);
      topo.Read(ki.Stream(), binary_in);
  
      const std::vector<int32> &phones = topo.GetPhones();
  
      std::vector<int32> phone2num_pdf_classes (1+phones.back());
      for (size_t i = 0; i < phones.size(); i++)
        phone2num_pdf_classes[phones[i]] = topo.NumPdfClasses(phones[i]);
  
      // Now the tree [not really a tree at this point]:
      ContextDependency *ctx_dep = NULL;
      if (shared_phones_rxfilename == "") {  // No sharing of phones: standard approach.
        ctx_dep = MonophoneContextDependency(phones, phone2num_pdf_classes);
      } else {
        std::vector<std::vector<int32> > shared_phones;
        ReadSharedPhonesList(shared_phones_rxfilename, &shared_phones);
        // ReadSharedPhonesList crashes on error.
        ctx_dep = MonophoneContextDependencyShared(shared_phones, phone2num_pdf_classes);
      }
  
      int32 num_pdfs = ctx_dep->NumPdfs();
  
      AmDiagGmm am_gmm;
      DiagGmm gmm;
      gmm.Resize(1, dim);
      {  // Initialize the gmm.
        Matrix<BaseFloat> inv_var(1, dim);
        inv_var.Row(0).CopyFromVec(glob_inv_var);
        Matrix<BaseFloat> mu(1, dim);
        mu.Row(0).CopyFromVec(glob_mean);
        Vector<BaseFloat> weights(1);
        weights.Set(1.0);
        gmm.SetInvVarsAndMeans(inv_var, mu);
        gmm.SetWeights(weights);
        gmm.ComputeGconsts();
      }
  
      for (int i = 0; i < num_pdfs; i++)
        am_gmm.AddPdf(gmm);
  
      if (perturb_factor != 0.0) {
        for (int i = 0; i < num_pdfs; i++)
          am_gmm.GetPdf(i).Perturb(perturb_factor);
      }
  
      // Now the transition model:
      TransitionModel trans_model(*ctx_dep, topo);
  
      {
        Output ko(model_filename, binary);
        trans_model.Write(ko.Stream(), binary);
        am_gmm.Write(ko.Stream(), binary);
      }
  
      // Now write the tree.
      ctx_dep->Write(Output(tree_filename, binary).Stream(),
                     binary);
  
      delete ctx_dep;
      return 0;
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }