Blame view

src/gmmbin/gmm-latgen-map.cc 8.47 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
  // gmmbin/gmm-latgen-map.cc
  
  // Copyright 2012  Neha Agrawal, Cisco Systems;
  //                 Johns Hopkins University (author: Daniel Povey)
  //           2014  Guoguo Chen
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <string>
  #include <vector>
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "gmm/am-diag-gmm.h"
  #include "gmm/mle-am-diag-gmm.h"
  #include "hmm/transition-model.h"
  #include "transform/fmllr-diag-gmm.h"
  #include "fstext/fstext-lib.h"
  #include "decoder/decoder-wrappers.h"
  #include "gmm/decodable-am-diag-gmm.h"
  #include "base/timer.h"
  #include "lat/kaldi-lattice.h" // for {Compact}LatticeArc
  
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      typedef kaldi::int32 int32;
      using fst::SymbolTable;
      using fst::Fst;
      using fst::StdArc;
  
      const char *usage = "Decode features using GMM-based model.  Note: the input
  "
          "<gmms-rspecifier> will typically be piped in from gmm-est-map.
  "
          "Note: <model-in> is only needed for the transition-model, which isn't
  "
          "included in <gmms-rspecifier>.
  "
          "
  "
          "Usage: gmm-latgen-map [options] <model-in> "
          "<gmms-rspecifier> <fsts-rxfilename|fsts-rspecifier> <features-rspecifier> "
          "<lattice-wspecifier> [ <words-wspecifier> [ <alignments-wspecifier> ] ]
  ";
  
      ParseOptions po(usage);
      bool binary = true;
      bool allow_partial = true;
      BaseFloat acoustic_scale = 0.1;
          
      std::string word_syms_filename, utt2spk_rspecifier;
      LatticeFasterDecoderConfig decoder_opts;
      decoder_opts.Register(&po);
      po.Register("utt2spk", &utt2spk_rspecifier, "rspecifier for utterance to "
                  "speaker map");
      po.Register("binary", &binary, "Write output in binary mode");
      po.Register("acoustic-scale", &acoustic_scale,
                  "Scaling factor for acoustic likelihoods");
      po.Register("word-symbol-table", &word_syms_filename,
                  "Symbol table for words [for debug output]");
      po.Register("allow-partial", &allow_partial,
                  "Produce output even when final state was not reached");
      po.Read(argc, argv);
  
      if (po.NumArgs() < 5 || po.NumArgs() > 7) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string model_in_filename = po.GetArg(1),
          gmms_rspecifier = po.GetArg(2),
          fst_in_filename = po.GetArg(3),
          feature_rspecifier = po.GetArg(4),
          lattice_wspecifier = po.GetArg(5),
          words_wspecifier = po.GetOptArg(6),
          alignment_wspecifier = po.GetOptArg(7);
  
      TransitionModel trans_model;
      {
        bool binary_read;
        Input is(model_in_filename, &binary_read);
        trans_model.Read(is.Stream(), binary_read);
      }
      RandomAccessMapAmDiagGmmReaderMapped gmms_reader(gmms_rspecifier,
                                                       utt2spk_rspecifier);
  
      Int32VectorWriter words_writer(words_wspecifier);
      Int32VectorWriter alignment_writer(alignment_wspecifier);
  
  
      bool determinize = decoder_opts.determinize_lattice;
      if (!determinize)
        KALDI_WARN << "determinize is set to FASLE ...";
      CompactLatticeWriter compact_lattice_writer;
      LatticeWriter lattice_writer;
  
      if (lattice_wspecifier != "") {
        if (! (determinize ? compact_lattice_writer.Open(lattice_wspecifier)
               : lattice_writer.Open(lattice_wspecifier)))
          KALDI_ERR << "Could not open table for writing lattices: "
                    << lattice_wspecifier;
      }
          
      fst::SymbolTable *word_syms = NULL;
      if (word_syms_filename != "") {
        word_syms = fst::SymbolTable::ReadText(word_syms_filename);
        if (!word_syms) {
          KALDI_ERR << "Could not read symbol table from file "
                    << word_syms_filename;
        }
      }
  
      BaseFloat tot_like = 0.0;
      kaldi::int64 frame_count = 0;
      int num_success = 0, num_fail = 0;
      Timer timer;
  
      if (ClassifyRspecifier(fst_in_filename, NULL, NULL) == kNoRspecifier) {
        // Input FST is just one FST, not a table of FSTs.
        Fst<StdArc> *decode_fst = fst::ReadFstKaldiGeneric(fst_in_filename);
  
        SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
        for (; !feature_reader.Done(); feature_reader.Next()) {
          string utt = feature_reader.Key();
  
          if (!gmms_reader.HasKey(utt)) {
            KALDI_WARN << "Utterance " << utt
                       << " has no corresponding MAP model skipping this utterance.";
            num_fail++;
            continue;
          }
          AmDiagGmm am_gmm;
          am_gmm.CopyFromAmDiagGmm(gmms_reader.Value(utt));
  
          Matrix<BaseFloat> features(feature_reader.Value());
          feature_reader.FreeCurrent();
          if (features.NumRows() == 0) {
            KALDI_WARN << "Zero-length utterance: " << utt;
            num_fail++;
            continue;
          }
  
          LatticeFasterDecoder decoder(*decode_fst, decoder_opts);
          kaldi::DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model,
                                                        features,
                                                        acoustic_scale);
          double like;
          if (DecodeUtteranceLatticeFaster(
                  decoder, gmm_decodable, trans_model, word_syms, utt,
                  acoustic_scale, determinize, allow_partial, &alignment_writer,
                  &words_writer, &compact_lattice_writer, &lattice_writer,
                  &like)) {
            tot_like += like;
            frame_count += features.NumRows();
            num_success++;
          } else num_fail++;
        }  // end looping over all utterances
      } else {
        RandomAccessTableReader<fst::VectorFstHolder> fst_reader(fst_in_filename);
        SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
        for (; !feature_reader.Done(); feature_reader.Next()) {
          string utt = feature_reader.Key();
  
          if (!fst_reader.HasKey(utt)) {
            KALDI_WARN << "Utterance " << utt << " has no corresponding FST"
                       << "skipping this utterance.";
            num_fail++;
            continue;
          }
  
          if (!gmms_reader.HasKey(utt)) {
            KALDI_WARN << "Utterance " << utt
                       << " has no corresponding MAP model skipping this utterance.";
            num_fail++;
            continue;
          }
          AmDiagGmm am_gmm;
          am_gmm.CopyFromAmDiagGmm(gmms_reader.Value(utt));
          
          Matrix<BaseFloat> features(feature_reader.Value());
          feature_reader.FreeCurrent();
          if (features.NumRows() == 0) {
            KALDI_WARN << "Zero-length utterance: " << utt;
            num_fail++;
            continue;
          }
  
          LatticeFasterDecoder decoder(fst_reader.Value(utt), decoder_opts);
          kaldi::DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model,
                                                        features,
                                                        acoustic_scale);
          double like;
          if (DecodeUtteranceLatticeFaster(
                  decoder, gmm_decodable, trans_model, word_syms, utt,
                  acoustic_scale, determinize, allow_partial, &alignment_writer,
                  &words_writer, &compact_lattice_writer, &lattice_writer,
                  &like)) {
            tot_like += like;
            frame_count += features.NumRows();
            num_success++;
          } else num_fail++;
        }  // end looping over all utterances
      }
      KALDI_LOG << "Average log-likelihood per frame is " 
                << (tot_like / frame_count) << " over " << frame_count << " frames.";
  
      double elapsed = timer.Elapsed();
      KALDI_LOG << "Time taken [excluding initialization] " << elapsed
                << "s: real-time factor assuming 100 frames/sec is "
                << (elapsed * 100.0 / frame_count);
      KALDI_LOG << "Done " << num_success << " utterances, failed for "
                << num_fail;
  
      delete word_syms;
      return (num_success != 0 ? 0 : 1);
    }
    catch(const std::exception& e) {
      std::cerr << e.what();
      return -1;
    }
  }