Blame view
src/gmmbin/gmm-transform-means.cc
3.65 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
// gmmbin/gmm-transform-means.cc // Copyright 2009-2011 Microsoft Corporation // 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "tree/context-dep.h" #include "hmm/transition-model.h" #include "transform/mllt.h" int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; const char *usage = "Transform GMM means with linear or affine transform " "Usage: gmm-transform-means <transform-matrix> <model-in> <model-out> " "e.g.: gmm-transform-means 2.mat 2.mdl 3.mdl "; bool binary = true; // write in binary if true. ParseOptions po(usage); po.Register("binary", &binary, "Write output in binary mode"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string mat_rxfilename = po.GetArg(1), model_in_rxfilename = po.GetArg(2), model_out_wxfilename = po.GetArg(3); Matrix<BaseFloat> mat; ReadKaldiObject(mat_rxfilename, &mat); AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary_read; Input ki(model_in_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_gmm.Read(ki.Stream(), binary_read); } int32 dim = am_gmm.Dim(); if (mat.NumRows() != dim) KALDI_ERR << "Transform matrix has " << mat.NumRows() << " rows but " "model has dimension " << am_gmm.Dim(); if (mat.NumCols() != dim && mat.NumCols() != dim+1) KALDI_ERR << "Transform matrix has " << mat.NumCols() << " columns but " "model has dimension " << am_gmm.Dim() << " (neither a linear nor an " "affine transform"; for (int32 i = 0; i < am_gmm.NumPdfs(); i++) { DiagGmm &gmm = am_gmm.GetPdf(i); Matrix<BaseFloat> means; gmm.GetMeans(&means); Matrix<BaseFloat> new_means(means.NumRows(), means.NumCols()); if (mat.NumCols() == dim) { // linear case // Right-multiply means by mat^T (equivalent to left-multiplying each // row by mat). new_means.AddMatMat(1.0, means, kNoTrans, mat, kTrans, 0.0); } else { // affine case Matrix<BaseFloat> means_ext(means.NumRows(), means.NumCols()+1); means_ext.Set(1.0); // set all elems to 1.0 SubMatrix<BaseFloat> means_part(means_ext, 0, means.NumRows(), 0, means.NumCols()); means_part.CopyFromMat(means); // copy old part... new_means.AddMatMat(1.0, means_ext, kNoTrans, mat, kTrans, 0.0); } gmm.SetMeans(new_means); gmm.ComputeGconsts(); } { Output ko(model_out_wxfilename, binary); trans_model.Write(ko.Stream(), binary); am_gmm.Write(ko.Stream(), binary); } KALDI_LOG << "Written model to " << model_out_wxfilename; return 0; } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |