Blame view
src/ivector/logistic-regression.cc
11.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
// ivector/logistic-regression.cc // Copyright 2014 David Snyder // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "ivector/logistic-regression.h" #include "gmm/model-common.h" // For GetSplitTargets() #include <numeric> // For std::accumulate namespace kaldi { void LogisticRegression::Train(const Matrix<BaseFloat> &xs, const std::vector<int32> &ys, const LogisticRegressionConfig &conf) { int32 xs_num_rows = xs.NumRows(), xs_num_cols = xs.NumCols(), num_ys = ys.size(); KALDI_ASSERT(xs_num_rows == num_ys); // Adding on extra column for each x to handle the prior. Matrix<BaseFloat> xs_with_prior(xs_num_rows, xs_num_cols + 1); SubMatrix<BaseFloat> sub_xs(xs_with_prior, 0, xs_num_rows, 0, xs_num_cols); sub_xs.CopyFromMat(xs); int32 num_classes = *std::max_element(ys.begin(), ys.end()) + 1; weights_.Resize(num_classes, xs_num_cols + 1); Matrix<BaseFloat> xw(xs_num_rows, num_classes); // Adding on extra column for each x to handle the prior. for (int32 i = 0; i < xs_num_rows; i++) { xs_with_prior(i, xs_num_cols) = 1.0; } // At the beginning of training we have no mixture components, // therefore class_ is the "identity" mapping, that is // class_[i] = i. for (int32 i = 0; i < num_classes; i++) { class_.push_back(i); } weights_.SetZero(); TrainParameters(xs_with_prior, ys, conf, &xw); KALDI_LOG << "Finished training parameters without mixture components."; // If we are using mixture components, we add those components // in MixUp and retrain with the extra weights. if (conf.mix_up > num_classes) { MixUp(ys, num_classes, conf); Matrix<BaseFloat> xw(xs_num_rows, weights_.NumRows()); TrainParameters(xs_with_prior, ys, conf, &xw); KALDI_LOG << "Finished training mixture components."; } } void LogisticRegression::MixUp(const std::vector<int32> &ys, const int32 &num_classes, const LogisticRegressionConfig &conf) { Vector<BaseFloat> counts(num_classes); for (int32 i = 0; i < ys.size(); i++) { counts(ys[i]) += 1.0; } // TODO: Figure out what min_count should be int32 min_count = 1; std::vector<int32> targets; GetSplitTargets(counts, conf.mix_up, conf.power, min_count, &targets); int32 new_dim = std::accumulate(targets.begin(), targets.end(), static_cast<int32>(0)); KALDI_LOG << "Target number mixture components was " << conf.mix_up << ". Training " << new_dim << " mixture components."; int32 old_dim = weights_.NumRows(), num_components = old_dim, num_feats = weights_.NumCols(); Matrix<BaseFloat> old_weights(weights_); weights_.Resize(new_dim, num_feats); SubMatrix<BaseFloat> sub_weights(weights_, 0, num_classes, 0, num_feats); // We need to retain the original weights sub_weights.CopyFromMat(old_weights); class_.resize(new_dim); // For each class i for (int32 i = 0; i < targets.size(); i++) { int32 mixes = targets[i]; // We start at j = 1 since one copy of the components already // exists in weights_. for (int32 j = 1; j < mixes; j++) { int32 offset = num_components; weights_.Row(offset).CopyRowFromMat(weights_, i); Vector<BaseFloat> noise(num_feats); noise.SetRandn(); weights_.Row(offset).AddVec(1.0e-05, noise); class_[offset] = i; // The class i maps to the row at offset num_components += 1; } } } void LogisticRegression::TrainParameters(const Matrix<BaseFloat> &xs, const std::vector<int32> &ys, const LogisticRegressionConfig &conf, Matrix<BaseFloat> *xw) { int32 max_steps = conf.max_steps; BaseFloat normalizer = conf.normalizer; LbfgsOptions lbfgs_opts; lbfgs_opts.minimize = false; // Get initial w vector Vector<BaseFloat> init_w(weights_.NumRows() * weights_.NumCols()); init_w.CopyRowsFromMat(weights_); OptimizeLbfgs<BaseFloat> lbfgs(init_w, lbfgs_opts); for (int32 step = 0; step < max_steps; step++) { DoStep(xs, xw, ys, &lbfgs, normalizer); } Vector<BaseFloat> best_w(lbfgs.GetValue()); weights_.CopyRowsFromVec(best_w); } void LogisticRegression::GetLogPosteriors(const Matrix<BaseFloat> &xs, Matrix<BaseFloat> *log_posteriors) { int32 xs_num_rows = xs.NumRows(), xs_num_cols = xs.NumCols(), num_mixes = weights_.NumRows(); int32 num_classes = *std::max_element(class_.begin(), class_.end()) + 1; log_posteriors->Resize(xs_num_rows, num_classes); Matrix<BaseFloat> xw(xs_num_rows, num_mixes); Matrix<BaseFloat> xs_with_prior(xs_num_rows, xs_num_cols + 1); SubMatrix<BaseFloat> sub_xs(xs_with_prior, 0, xs_num_rows, 0, xs_num_cols); sub_xs.CopyFromMat(xs); // Adding on extra column for each x to handle the prior. for (int32 i = 0; i < xs_num_rows; i++) { xs_with_prior(i, xs_num_cols) = 1.0; } xw.AddMatMat(1.0, xs_with_prior, kNoTrans, weights_, kTrans, 0.0); log_posteriors->Set(-std::numeric_limits<BaseFloat>::infinity()); // i is the training example for (int32 i = 0; i < xs_num_rows; i++) { for (int32 j = 0; j < num_mixes; j++) { int32 k = class_[j]; (*log_posteriors)(i,k) = LogAdd((*log_posteriors)(i,k), xw(i, j)); } // Normalize the row. log_posteriors->Row(i).Add(-xw.Row(i).LogSumExp()); } } void LogisticRegression::GetLogPosteriors(const Vector<BaseFloat> &x, Vector<BaseFloat> *log_posteriors) { int32 x_dim = x.Dim(); int32 num_classes = *std::max_element(class_.begin(), class_.end()) + 1, num_mixes = weights_.NumRows(); log_posteriors->Resize(num_classes); Vector<BaseFloat> xw(weights_.NumRows()); Vector<BaseFloat> x_with_prior(x_dim + 1); SubVector<BaseFloat> sub_x(x_with_prior, 0, x_dim); sub_x.CopyFromVec(x); // Adding on extra element to handle the prior x_with_prior(x_dim) = 1.0; xw.AddMatVec(1.0, weights_, kNoTrans, x_with_prior, kNoTrans); log_posteriors->Set(-std::numeric_limits<BaseFloat>::infinity()); for (int32 i = 0; i < num_mixes; i++) { int32 j = class_[i]; (*log_posteriors)(j) = LogAdd((*log_posteriors)(j), xw(i)); } log_posteriors->Add(-log_posteriors->LogSumExp()); } BaseFloat LogisticRegression::DoStep(const Matrix<BaseFloat> &xs, Matrix<BaseFloat> *xw, const std::vector<int32> &ys, OptimizeLbfgs<BaseFloat> *lbfgs, BaseFloat normalizer) { Matrix<BaseFloat> gradient(weights_.NumRows(), weights_.NumCols()); // Vector form of the above matrix Vector<BaseFloat> grad_vec(weights_.NumRows() * weights_.NumCols()); // Calculate XW.T. The rows correspond to the x // training examples and the columns to the class labels. xw->AddMatMat(1.0, xs, kNoTrans, weights_, kTrans, 0.0); // Calculate both the gradient and the objective function. BaseFloat objf = GetObjfAndGrad(xs, ys, *xw, &gradient, normalizer); // Convert gradient (a matrix) into a vector of size // gradient.NumCols * gradient.NumRows. grad_vec.CopyRowsFromMat(gradient); // Compute next step in L-BFGS. lbfgs->DoStep(objf, grad_vec); // Update weights Vector<BaseFloat> new_w(lbfgs->GetProposedValue()); weights_.CopyRowsFromVec(new_w); KALDI_LOG << "Objective function is " << objf; return objf; } BaseFloat LogisticRegression::GetObjfAndGrad( const Matrix<BaseFloat> &xs, const std::vector<int32> &ys, const Matrix<BaseFloat> &xw, Matrix<BaseFloat> *grad, BaseFloat normalizer) { BaseFloat raw_objf = 0.0; int32 num_classes = *std::max_element(ys.begin(), ys.end()) + 1; std::vector< std::vector<int32> > class_to_cols(num_classes, std::vector<int32>()); for (int32 i = 0; i < class_.size(); i++) { class_to_cols[class_[i]].push_back(i); } // For each training example class for (int32 i = 0; i < ys.size(); i++) { Vector<BaseFloat> row(xw.NumCols()); row.CopyFromVec(xw.Row(i)); row.ApplySoftMax(); // Identify the rows of weights_ (which are a set of columns in wx) // which correspond to class ys[i] const std::vector<int32> &cols = class_to_cols[ys[i]]; SubVector<BaseFloat> x = xs.Row(i); BaseFloat class_sum = 0.0; for (int32 j = 0; j < cols.size(); j++) { class_sum += row(cols[j]); } if (class_sum < 1.0e-20) class_sum = 1.0e-20; raw_objf += Log(class_sum); // Iterate over weights for each component. If there are no // mixtures each row corresponds to a class. for (int32 k = 0; k < weights_.NumRows(); k++) { // p(y = k | x_i) where k is a component. BaseFloat p = row(k); if (class_[k] == ys[i]) { // If the classes aren't split into mixture components // then p/class_sum = 1.0. grad->Row(k).AddVec(p/class_sum - p, x); } else { grad->Row(k).AddVec(-1.0 * p, x); } } } // Scale and add regularization term. grad->Scale(1.0/ys.size()); grad->AddMat(-1.0 * normalizer, weights_); raw_objf /= ys.size(); BaseFloat regularizer = - 0.5 * normalizer * TraceMatMat(weights_, weights_, kTrans); KALDI_VLOG(2) << "Objf is " << raw_objf << " + " << regularizer << " = " << (raw_objf + regularizer); return raw_objf + regularizer; } void LogisticRegression::SetWeights(const Matrix<BaseFloat> &weights, const std::vector<int32> classes) { weights_.Resize(weights.NumRows(), weights.NumCols()); weights_.CopyFromMat(weights); class_.resize(classes.size()); for (int32 i = 0; i < class_.size(); i++) class_[i] = classes[i]; } void LogisticRegression::ScalePriors(const Vector<BaseFloat> &scales) { Vector<BaseFloat> log_scales(scales); log_scales.ApplyLog(); for (int32 i = 0; i < weights_.NumRows(); i++) weights_(i, weights_.NumCols() - 1) += log_scales(class_[i]); } void LogisticRegression::Write(std::ostream &os, bool binary) const { WriteToken(os, binary, "<LogisticRegression>"); WriteToken(os, binary, "<weights>"); weights_.Write(os, binary); WriteToken(os, binary, "<class>"); WriteIntegerVector(os, binary, class_); WriteToken(os, binary, "</LogisticRegression>"); } void LogisticRegression::Read(std::istream &is, bool binary) { ExpectToken(is, binary, "<LogisticRegression>"); ExpectToken(is, binary, "<weights>"); weights_.Read(is, binary); std::string token; ReadToken(is, binary, &token); if (token == "<class>") { ReadIntegerVector(is, binary, &class_); } else { int32 num_classes = weights_.NumRows(); for (int32 i = 0; i < num_classes; i++) { class_.push_back(i); } } ExpectToken(is, binary, "</LogisticRegression>"); } } |