Blame view

src/ivector/plda.cc 29.3 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
  // ivector/plda.cc
  
  // Copyright 2013     Daniel Povey
  //           2015     David Snyder
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <vector>
  #include "ivector/plda.h"
  
  namespace kaldi {
  
  void Plda::Write(std::ostream &os, bool binary) const {
    WriteToken(os, binary, "<Plda>");
    mean_.Write(os, binary);
    transform_.Write(os, binary);
    psi_.Write(os, binary);
    WriteToken(os, binary, "</Plda>");
  }
  
  void Plda::Read(std::istream &is, bool binary) {
    ExpectToken(is, binary, "<Plda>");
    mean_.Read(is, binary);
    transform_.Read(is, binary);
    psi_.Read(is, binary);
    ExpectToken(is, binary, "</Plda>");
    ComputeDerivedVars();
  }
  
  template<class Real>
  /// This function computes a projection matrix that when applied makes the
  /// covariance unit (i.e. all 1).
  static void ComputeNormalizingTransform(const SpMatrix<Real> &covar,
                                          MatrixBase<Real> *proj) {
    int32 dim = covar.NumRows();
    TpMatrix<Real> C(dim);  // Cholesky of covar, covar = C C^T
    C.Cholesky(covar);
    C.Invert();  // The matrix that makes covar unit is C^{-1}, because
                 // C^{-1} covar C^{-T} = C^{-1} C C^T C^{-T} = I.
    proj->CopyFromTp(C, kNoTrans);  // set "proj" to C^{-1}.
  }
  
  
  void Plda::ComputeDerivedVars() {
    KALDI_ASSERT(Dim() > 0);
    offset_.Resize(Dim());
    offset_.AddMatVec(-1.0, transform_, kNoTrans, mean_, 0.0);
  }
  
  
  /**
     This comment explains the thinking behind the function LogLikelihoodRatio.
     The reference is "Probabilistic Linear Discriminant Analysis" by
     Sergey Ioffe, ECCV 2006.
  
     I'm looking at the un-numbered equation between eqs. (4) and (5),
     that says
       P(u^p | u^g_{1...n}) =  N (u^p | \frac{n \Psi}{n \Psi + I} \bar{u}^g, I + \frac{\Psi}{n\Psi + I})
  
     Here, the superscript ^p refers to the "probe" example (e.g. the example
     to be classified), and u^g_1 is the first "gallery" example, i.e. the first
     training example of that class.  \psi is the between-class covariance
     matrix, assumed to be diagonalized, and I can be interpreted as the within-class
     covariance matrix which we have made unit.
  
     We want the likelihood ratio P(u^p | u^g_{1..n}) / P(u^p), where the
     numerator is the probability of u^p given that it's in that class, and the
     denominator is the probability of u^p with no class assumption at all
     (e.g. in its own class).
  
     The expression above even works for n = 0 (e.g. the denominator of the likelihood
     ratio), where it gives us
       P(u^p) = N(u^p | 0, I + \Psi)
     i.e. it's distributed with zero mean and covarance (within + between).
     The likelihood ratio we want is:
        N(u^p | \frac{n \Psi}{n \Psi + I} \bar{u}^g, I + \frac{\Psi}{n \Psi + I}) /
        N(u^p | 0, I + \Psi)
     where \bar{u}^g is the mean of the "gallery examples"; and we can expand the
     log likelihood ratio as
       - 0.5 [ (u^p - m) (I + \Psi/(n \Psi + I))^{-1} (u^p - m)  +  logdet(I + \Psi/(n \Psi + I)) ]
       + 0.5 [u^p (I + \Psi) u^p  +  logdet(I + \Psi) ]
     where m = (n \Psi)/(n \Psi + I) \bar{u}^g.
  
   */
  
  double Plda::GetNormalizationFactor(
      const VectorBase<double> &transformed_ivector,
      int32 num_examples) const {
    KALDI_ASSERT(num_examples > 0);
    // Work out the normalization factor.  The covariance for an average over
    // "num_examples" training iVectors equals \Psi + I/num_examples.
    Vector<double> transformed_ivector_sq(transformed_ivector);
    transformed_ivector_sq.ApplyPow(2.0);
    // inv_covar will equal 1.0 / (\Psi + I/num_examples).
    Vector<double> inv_covar(psi_);
    inv_covar.Add(1.0 / num_examples);
    inv_covar.InvertElements();
    // "transformed_ivector" should have covariance (\Psi + I/num_examples), i.e.
    // within-class/num_examples plus between-class covariance.  So
    // transformed_ivector_sq . (I/num_examples + \Psi)^{-1} should be equal to
    //  the dimension.
    double dot_prod = VecVec(inv_covar, transformed_ivector_sq);
    return sqrt(Dim() / dot_prod);
  }
  
  
  double Plda::TransformIvector(const PldaConfig &config,
                                const VectorBase<double> &ivector,
                                int32 num_examples,
                                VectorBase<double> *transformed_ivector) const {
    KALDI_ASSERT(ivector.Dim() == Dim() && transformed_ivector->Dim() == Dim());
    double normalization_factor;
    transformed_ivector->CopyFromVec(offset_);
    transformed_ivector->AddMatVec(1.0, transform_, kNoTrans, ivector, 1.0);
    if (config.simple_length_norm)
      normalization_factor = sqrt(transformed_ivector->Dim())
        / transformed_ivector->Norm(2.0);
    else
      normalization_factor = GetNormalizationFactor(*transformed_ivector,
                                                    num_examples);
    if (config.normalize_length)
      transformed_ivector->Scale(normalization_factor);
    return normalization_factor;
  }
  
  // "float" version of TransformIvector.
  float Plda::TransformIvector(const PldaConfig &config,
                               const VectorBase<float> &ivector,
                               int32 num_examples,
                               VectorBase<float> *transformed_ivector) const {
    Vector<double> tmp(ivector), tmp_out(ivector.Dim());
    float ans = TransformIvector(config, tmp, num_examples, &tmp_out);
    transformed_ivector->CopyFromVec(tmp_out);
    return ans;
  }
  
  
  // There is an extended comment within this file, referencing a paper by
  // Ioffe, that may clarify what this function is doing.
  double Plda::LogLikelihoodRatio(
      const VectorBase<double> &transformed_train_ivector,
      int32 n, // number of training utterances.
      const VectorBase<double> &transformed_test_ivector) const {
    int32 dim = Dim();
    double loglike_given_class, loglike_without_class;
    { // work out loglike_given_class.
      // "mean" will be the mean of the distribution if it comes from the
      // training example.  The mean is \frac{n \Psi}{n \Psi + I} \bar{u}^g
      // "variance" will be the variance of that distribution, equal to
      // I + \frac{\Psi}{n\Psi + I}.
      Vector<double> mean(dim, kUndefined);
      Vector<double> variance(dim, kUndefined);
      for (int32 i = 0; i < dim; i++) {
        mean(i) = n * psi_(i) / (n * psi_(i) + 1.0)
          * transformed_train_ivector(i);
        variance(i) = 1.0 + psi_(i) / (n * psi_(i) + 1.0);
      }
      double logdet = variance.SumLog();
      Vector<double> sqdiff(transformed_test_ivector);
      sqdiff.AddVec(-1.0, mean);
      sqdiff.ApplyPow(2.0);
      variance.InvertElements();
      loglike_given_class = -0.5 * (logdet + M_LOG_2PI * dim +
                                    VecVec(sqdiff, variance));
    }
    { // work out loglike_without_class.  Here the mean is zero and the variance
      // is I + \Psi.
      Vector<double> sqdiff(transformed_test_ivector); // there is no offset.
      sqdiff.ApplyPow(2.0);
      Vector<double> variance(psi_);
      variance.Add(1.0); // I + \Psi.
      double logdet = variance.SumLog();
      variance.InvertElements();
      loglike_without_class = -0.5 * (logdet + M_LOG_2PI * dim +
                                      VecVec(sqdiff, variance));
    }
    double loglike_ratio = loglike_given_class - loglike_without_class;
    return loglike_ratio;
  }
  
  
  void Plda::SmoothWithinClassCovariance(double smoothing_factor) {
    KALDI_ASSERT(smoothing_factor >= 0.0 && smoothing_factor <= 1.0);
    // smoothing_factor > 1.0 is possible but wouldn't really make sense.
  
    KALDI_LOG << "Smoothing within-class covariance by " << smoothing_factor
              << ", Psi is initially: " << psi_;
    Vector<double> within_class_covar(Dim());
    within_class_covar.Set(1.0); // It's now the current within-class covariance
                                 // (a diagonal matrix) in the space transformed
                                 // by transform_.
    within_class_covar.AddVec(smoothing_factor, psi_);
    /// We now revise our estimate of the within-class covariance to this
    /// larger value.  This means that the transform has to change to as
    /// to make this new, larger covariance unit.  And our between-class
    /// covariance in this space is now less.
  
    psi_.DivElements(within_class_covar);
    KALDI_LOG << "New value of Psi is " << psi_;
  
    within_class_covar.ApplyPow(-0.5);
    transform_.MulRowsVec(within_class_covar);
  
    ComputeDerivedVars();
  }
  
  void Plda::ApplyTransform(const Matrix<double> &in_transform) {
    KALDI_ASSERT(in_transform.NumRows() <= Dim()
      && in_transform.NumCols() == Dim());
  
    // Apply in_transform to mean_.
    Vector<double> mean_new(in_transform.NumRows());
    mean_new.AddMatVec(1.0, in_transform, kNoTrans, mean_, 0.0);
    mean_.Resize(in_transform.NumRows());
    mean_.CopyFromVec(mean_new);
  
    SpMatrix<double> between_var(in_transform.NumCols()),
                     within_var(in_transform.NumCols()),
                     psi_mat(in_transform.NumCols()),
                     between_var_new(Dim()),
                     within_var_new(Dim());
    Matrix<double> transform_invert(transform_);
  
    // Next, compute the between_var and within_var that existed
    // prior to diagonalization.
    psi_mat.AddDiagVec(1.0, psi_);
    transform_invert.Invert();
    within_var.AddMat2(1.0, transform_invert, kNoTrans, 0.0);
    between_var.AddMat2Sp(1.0, transform_invert, kNoTrans, psi_mat, 0.0);
  
    // Next, transform the variances using the input transformation.
    between_var_new.AddMat2Sp(1.0, in_transform, kNoTrans, between_var, 0.0);
    within_var_new.AddMat2Sp(1.0, in_transform, kNoTrans, within_var, 0.0);
  
    // Finally, we need to recompute psi_ and transform_. The remainder of
    // the code in this function  is a lightly modified copy of
    // PldaEstimator::GetOutput().
    Matrix<double> transform1(Dim(), Dim());
    ComputeNormalizingTransform(within_var_new, &transform1);
    // Now transform is a matrix that if we project with it,
    // within_var becomes unit.
    // between_var_proj is between_var after projecting with transform1.
    SpMatrix<double> between_var_proj(Dim());
    between_var_proj.AddMat2Sp(1.0, transform1, kNoTrans, between_var_new, 0.0);
  
    Matrix<double> U(Dim(), Dim());
    Vector<double> s(Dim());
    // Do symmetric eigenvalue decomposition between_var_proj = U diag(s) U^T,
    // where U is orthogonal.
    between_var_proj.Eig(&s, &U);
  
    KALDI_ASSERT(s.Min() >= 0.0);
    int32 n;
    s.ApplyFloor(0.0, &n);
    if (n > 0) {
      KALDI_WARN << "Floored " << n << " eigenvalues of between-class "
                 << "variance to zero.";
    }
    // Sort from greatest to smallest eigenvalue.
    SortSvd(&s, &U);
  
    // The transform U^T will make between_var_proj diagonal with value s
    // (i.e. U^T U diag(s) U U^T = diag(s)).  The final transform that
    // makes within_var unit and between_var diagonal is U^T transform1,
    // i.e. first transform1 and then U^T.
    transform_.Resize(Dim(), Dim());
    transform_.AddMatMat(1.0, U, kTrans, transform1, kNoTrans, 0.0);
    psi_.Resize(Dim());
    psi_.CopyFromVec(s);
    ComputeDerivedVars();
  }
  
  void PldaStats::AddSamples(double weight,
                             const Matrix<double> &group) {
    if (dim_ == 0) {
      Init(group.NumCols());
    } else {
      KALDI_ASSERT(dim_ == group.NumCols());
    }
    int32 n = group.NumRows(); // number of examples for this class
    Vector<double> *mean = new Vector<double>(dim_);
    mean->AddRowSumMat(1.0 / n, group);
  
    offset_scatter_.AddMat2(weight, group, kTrans, 1.0);
    // the following statement has the same effect as if we
    // had first subtracted the mean from each element of
    // the group before the statement above.
    offset_scatter_.AddVec2(-n * weight, *mean);
  
    class_info_.push_back(ClassInfo(weight, mean, n));
  
    num_classes_ ++;
    num_examples_ += n;
    class_weight_ += weight;
    example_weight_ += weight * n;
  
    sum_.AddVec(weight, *mean);
  }
  
  PldaStats::~PldaStats() {
    for (size_t i = 0; i < class_info_.size(); i++)
      delete class_info_[i].mean;
  }
  
  bool PldaStats::IsSorted() const {
    for (size_t i = 0; i + 1 < class_info_.size(); i++)
      if (class_info_[i+1] < class_info_[i])
        return false;
    return true;
  }
  
  void PldaStats::Init(int32 dim) {
    KALDI_ASSERT(dim_ == 0);
    dim_ = dim;
    num_classes_ = 0;
    num_examples_ = 0;
    class_weight_ = 0.0;
    example_weight_ = 0.0;
    sum_.Resize(dim);
    offset_scatter_.Resize(dim);
    KALDI_ASSERT(class_info_.empty());
  }
  
  
  PldaEstimator::PldaEstimator(const PldaStats &stats):
      stats_(stats) {
    KALDI_ASSERT(stats.IsSorted());
    InitParameters();
  }
  
  
  double PldaEstimator::ComputeObjfPart1() const {
    // Returns the part of the objf relating to offsets from the class means.
    // within_class_count equals the sum over the classes, of the weight of that
    // class (normally 1) times (1 - #examples) of that class, which equals the
    // rank of the covariance we're modeling.  We imagine that we're modeling (1 -
    // #examples) separate samples, each with the within-class covariance.. the
    // argument is a little complicated and involves an orthogonal complement of a
    // matrix whose first row computes the mean.
  
    double within_class_count = stats_.example_weight_ - stats_.class_weight_,
        within_logdet, det_sign;
    SpMatrix<double> inv_within_var(within_var_);
    inv_within_var.Invert(&within_logdet, &det_sign);
    KALDI_ASSERT(det_sign == 1 && "Within-class covariance is singular");
  
    double objf = -0.5 * (within_class_count * (within_logdet + M_LOG_2PI * Dim())
                          + TraceSpSp(inv_within_var, stats_.offset_scatter_));
    return objf;
  }
  
  double PldaEstimator::ComputeObjfPart2() const {
    double tot_objf = 0.0;
  
    int32 n = -1; // the number of examples for the current class
    SpMatrix<double> combined_inv_var(Dim());
    // combined_inv_var = (between_var_ + within_var_ / n)^{-1}
    double combined_var_logdet;
  
    for (size_t i = 0; i < stats_.class_info_.size(); i++) {
      const ClassInfo &info = stats_.class_info_[i];
      if (info.num_examples != n) {
        n = info.num_examples;
        // variance of mean of n examples is between-class + 1/n * within-class
        combined_inv_var.CopyFromSp(between_var_);
        combined_inv_var.AddSp(1.0 / n, within_var_);
        combined_inv_var.Invert(&combined_var_logdet);
      }
      Vector<double> mean (*(info.mean));
      mean.AddVec(-1.0 / stats_.class_weight_, stats_.sum_);
      tot_objf += info.weight * -0.5 * (combined_var_logdet + M_LOG_2PI * Dim()
                                        + VecSpVec(mean, combined_inv_var, mean));
    }
    return tot_objf;
  }
  
  double PldaEstimator::ComputeObjf() const {
    double ans1 = ComputeObjfPart1(),
        ans2 = ComputeObjfPart2(),
        ans = ans1 + ans2,
        example_weights = stats_.example_weight_,
        normalized_ans = ans / example_weights;
    KALDI_LOG << "Within-class objf per sample is " << (ans1 / example_weights)
              << ", between-class is " << (ans2 / example_weights)
              << ", total is " << normalized_ans;
    return normalized_ans;
  }
  
  void PldaEstimator::InitParameters() {
    within_var_.Resize(Dim());
    within_var_.SetUnit();
    between_var_.Resize(Dim());
    between_var_.SetUnit();
  }
  
  void PldaEstimator::ResetPerIterStats() {
    within_var_stats_.Resize(Dim());
    within_var_count_ = 0.0;
    between_var_stats_.Resize(Dim());
    between_var_count_ = 0.0;
  }
  
  void PldaEstimator::GetStatsFromIntraClass() {
    within_var_stats_.AddSp(1.0, stats_.offset_scatter_);
    // Note: in the normal case, the expression below will be equal to the sum
    // over the classes, of (1-n), where n is the #examples for that class.  That
    // is the rank of the scatter matrix that "offset_scatter_" has for that
    // class. [if weights other than 1.0 are used, it will be different.]
    within_var_count_ += (stats_.example_weight_ - stats_.class_weight_);
  }
  
  
  /**
     GetStatsFromClassMeans() is the more complicated part of PLDA estimation.
     Let's suppose the mean of a particular class is m, and suppose that
     that class had n examples.  We suppose that
       m ~ N(0, between_var_ + 1/n within_var_)
     i.e. m is Gaussian-distributed with zero mean and variance equal to the
     between-class variance plus 1/n times the within-class variance.  Now, m
     is observed (as stats_.class_info_[something].mean).  We're doing an E-M
     procedure where we treat m as the sum of two variables:
       m = x + y
     where
       x ~ N(0, between_var_)
       y ~ N(0, 1/n * within_var_)
     The distribution of x will contribute to the stats of between_var_, and
     y to within_var_.  Now, y = m - x, so we can focus on working out the
     distribution of x and then we can very simply get the distribution of y.
     The following expression also includes the likelihood of y as a function of
     x.  Note: the C is different from line to line.
  
     log p(x) = C - 0.5 ( x^T between_var^{-1} x  + (m-x)^T (1/n within_var)^{-1) (m-x) )
              = C - 0.5 x^T (between_var^{-1} + n within_var^{-1}) x + x^T z
  
              where z = n within_var^{-1} m, and we can write this as:
  
     log p(x) = C - 0.5 (x-w)^T (between_var^{-1} + n within_var^{-1}) (x-w)
  
      where x^T (between_var^{-1} + n within_var^{-1}) w = x^T z, i.e.
         (between_var^{-1} + n within_var^{-1}) w = z = n within_var^{-1} m, so
  
         w = (between_var^{-1} + n within_var^{-1})^{-1} * n within_var^{-1} m
  
      We can see that the distribution over x is Gaussian, with mean w and variance
       (between_var^{-1} + n within_var^{-1})^{-1}.
      The distribution over y is Gaussian with the same variance, and mean m - w.
      So the update to the between-var stats will be:
         between-var-stats += w w^T + (between_var^{-1} + n within_var^{-1})^{-1}.
      and the update to the within-var stats will be:
         within-var-stats += n ( (m-w) (m-w)^T (between_var^{-1} + n within_var^{-1})^{-1} ).
  
      The drawback of this formulation is that each time we encounter a different
      value of n (number of examples) we will have to do a different matrix
      inversion.  We'll try to improve on this later using a suitable transform.
   */
  
  void PldaEstimator::GetStatsFromClassMeans() {
    SpMatrix<double> between_var_inv(between_var_);
    between_var_inv.Invert();
    SpMatrix<double> within_var_inv(within_var_);
    within_var_inv.Invert();
    // mixed_var will equal (between_var^{-1} + n within_var^{-1})^{-1}.
    SpMatrix<double> mixed_var(Dim());
    int32 n = -1; // the current number of examples for the class.
  
    for (size_t i = 0; i < stats_.class_info_.size(); i++) {
      const ClassInfo &info = stats_.class_info_[i];
      double weight = info.weight;
      if (info.num_examples != n) {
        n = info.num_examples;
        mixed_var.CopyFromSp(between_var_inv);
        mixed_var.AddSp(n, within_var_inv);
        mixed_var.Invert();
      }
      Vector<double> m = *(info.mean); // the mean for this class.
      m.AddVec(-1.0 / stats_.class_weight_, stats_.sum_); // remove global mean
      Vector<double> temp(Dim()); // n within_var^{-1} m
      temp.AddSpVec(n, within_var_inv, m, 0.0);
      Vector<double> w(Dim()); // w, as defined in the comment.
      w.AddSpVec(1.0, mixed_var, temp, 0.0);
      Vector<double> m_w(m); // m - w
      m_w.AddVec(-1.0, w);
      between_var_stats_.AddSp(weight, mixed_var);
      between_var_stats_.AddVec2(weight, w);
      between_var_count_ += weight;
      within_var_stats_.AddSp(weight * n, mixed_var);
      within_var_stats_.AddVec2(weight * n, m_w);
      within_var_count_ += weight;
    }
  }
  
  void PldaEstimator::EstimateFromStats() {
    within_var_.CopyFromSp(within_var_stats_);
    within_var_.Scale(1.0 / within_var_count_);
    between_var_.CopyFromSp(between_var_stats_);
    between_var_.Scale(1.0 / between_var_count_);
  
    KALDI_LOG << "Trace of within-class variance is " << within_var_.Trace();
    KALDI_LOG << "Trace of between-class variance is " << between_var_.Trace();
  }
  
  
  void PldaEstimator::EstimateOneIter() {
    ResetPerIterStats();
    GetStatsFromIntraClass();
    GetStatsFromClassMeans();
    EstimateFromStats();
    KALDI_VLOG(2) << "Objective function is " << ComputeObjf();
  }
  
  
  void PldaEstimator::Estimate(const PldaEstimationConfig &config,
                               Plda *plda) {
    KALDI_ASSERT(stats_.example_weight_ > 0 && "Cannot estimate with no stats");
    for (int32 i = 0; i < config.num_em_iters; i++) {
      KALDI_LOG << "Plda estimation iteration " << i
                << " of " << config.num_em_iters;
      EstimateOneIter();
    }
    GetOutput(plda);
  }
  
  
  void PldaEstimator::GetOutput(Plda *plda) {
    plda->mean_ = stats_.sum_;
    plda->mean_.Scale(1.0 / stats_.class_weight_);
    KALDI_LOG << "Norm of mean of iVector distribution is "
              << plda->mean_.Norm(2.0);
  
    Matrix<double> transform1(Dim(), Dim());
    ComputeNormalizingTransform(within_var_, &transform1);
    // now transform is a matrix that if we project with it,
    // within_var_ becomes unit.
  
    // between_var_proj is between_var after projecting with transform1.
    SpMatrix<double> between_var_proj(Dim());
    between_var_proj.AddMat2Sp(1.0, transform1, kNoTrans, between_var_, 0.0);
  
    Matrix<double> U(Dim(), Dim());
    Vector<double> s(Dim());
    // Do symmetric eigenvalue decomposition between_var_proj = U diag(s) U^T,
    // where U is orthogonal.
    between_var_proj.Eig(&s, &U);
  
    KALDI_ASSERT(s.Min() >= 0.0);
    int32 n;
    s.ApplyFloor(0.0, &n);
    if (n > 0) {
      KALDI_WARN << "Floored " << n << " eigenvalues of between-class "
                 << "variance to zero.";
    }
    // Sort from greatest to smallest eigenvalue.
    SortSvd(&s, &U);
  
    // The transform U^T will make between_var_proj diagonal with value s
    // (i.e. U^T U diag(s) U U^T = diag(s)).  The final transform that
    // makes within_var_ unit and between_var_ diagonal is U^T transform1,
    // i.e. first transform1 and then U^T.
  
    plda->transform_.Resize(Dim(), Dim());
    plda->transform_.AddMatMat(1.0, U, kTrans, transform1, kNoTrans, 0.0);
    plda->psi_ = s;
  
    KALDI_LOG << "Diagonal of between-class variance in normalized space is " << s;
  
    if (GetVerboseLevel() >= 2) { // at higher verbose levels, do a self-test
                                  // (just tests that this function does what it
                                  // should).
      SpMatrix<double> tmp_within(Dim());
      tmp_within.AddMat2Sp(1.0, plda->transform_, kNoTrans, within_var_, 0.0);
      KALDI_ASSERT(tmp_within.IsUnit(0.0001));
      SpMatrix<double> tmp_between(Dim());
      tmp_between.AddMat2Sp(1.0, plda->transform_, kNoTrans, between_var_, 0.0);
      KALDI_ASSERT(tmp_between.IsDiagonal(0.0001));
      Vector<double> psi(Dim());
      psi.CopyDiagFromSp(tmp_between);
      AssertEqual(psi, plda->psi_);
    }
    plda->ComputeDerivedVars();
  }
  
  void PldaUnsupervisedAdaptor::AddStats(double weight,
                                         const Vector<double> &ivector) {
    if (mean_stats_.Dim() == 0) {
      mean_stats_.Resize(ivector.Dim());
      variance_stats_.Resize(ivector.Dim());
    }
    KALDI_ASSERT(weight >= 0.0);
    tot_weight_ += weight;
    mean_stats_.AddVec(weight, ivector);
    variance_stats_.AddVec2(weight, ivector);
  }
  
  void PldaUnsupervisedAdaptor::AddStats(double weight,
                                         const Vector<float> &ivector) {
    Vector<double> ivector_dbl(ivector);
    this->AddStats(weight, ivector_dbl);
  }
  
  void PldaUnsupervisedAdaptor::UpdatePlda(const PldaUnsupervisedAdaptorConfig &config,
                                           Plda *plda) const {
    KALDI_ASSERT(tot_weight_ > 0.0);
    int32 dim = mean_stats_.Dim();
    KALDI_ASSERT(dim == plda->Dim());
    Vector<double> mean(mean_stats_);
    mean.Scale(1.0 / tot_weight_);
    SpMatrix<double> variance(variance_stats_);
    variance.Scale(1.0 / tot_weight_);
    variance.AddVec2(-1.0, mean);  // Make it the uncentered variance.
  
    // mean_diff of the adaptation data from the training data.  We optionally add
    // this to our total covariance matrix
    Vector<double> mean_diff(mean);
    mean_diff.AddVec(-1.0, plda->mean_);
    KALDI_ASSERT(config.mean_diff_scale >= 0.0);
    variance.AddVec2(config.mean_diff_scale, mean_diff);
  
    // update the plda's mean data-member with our adaptation-data mean.
    plda->mean_.CopyFromVec(mean);
  
  
    // transform_model_ is a row-scaled version of plda->transform_ that
    // transforms into the space where the total covariance is 1.0.  Because
    // plda->transform_ transforms into a space where the within-class covar is
    // 1.0 and the the between-class covar is diag(plda->psi_), we need to scale
    // each dimension i by 1.0 / sqrt(1.0 + plda->psi_(i))
  
    Matrix<double> transform_mod(plda->transform_);
    for (int32 i = 0; i < dim; i++)
      transform_mod.Row(i).Scale(1.0 / sqrt(1.0 + plda->psi_(i)));
  
    // project the variance of the adaptation set into this space where
    // the total covariance is unit.
    SpMatrix<double> variance_proj(dim);
    variance_proj.AddMat2Sp(1.0, transform_mod, kNoTrans,
                            variance, 0.0);
  
    // Do eigenvalue decomposition of variance_proj; this will tell us the
    // directions in which the adaptation-data covariance is more than
    // the training-data covariance.
    Matrix<double> P(dim, dim);
    Vector<double> s(dim);
    variance_proj.Eig(&s, &P);
    SortSvd(&s, &P);
    KALDI_LOG << "Eigenvalues of adaptation-data total-covariance in space where "
              << "training-data total-covariance is unit, is: " << s;
  
    // W, B are the (within,between)-class covars in the space transformed by
    // transform_mod.
    SpMatrix<double> W(dim), B(dim);
    for (int32 i = 0; i < dim; i++) {
      W(i, i) =           1.0 / (1.0 + plda->psi_(i)),
      B(i, i) = plda->psi_(i) / (1.0 + plda->psi_(i));
    }
  
    // OK, so variance_proj (projected by transform_mod) is P diag(s) P^T.
    // Suppose that after transform_mod we project by P^T.  Then the adaptation-data's
    // variance would be P^T P diag(s) P^T P = diag(s), and the PLDA model's
    // within class variance would be P^T W P and its between-class variance would be
    // P^T B P.  We'd still have that W+B = I in this space.
    // First let's compute these projected variances... we call the "proj2" because
    // it's after the data has been projected twice (actually, transformed, as there is no
    // dimension loss), by transform_mod and then P^T.
  
    SpMatrix<double> Wproj2(dim), Bproj2(dim);
    Wproj2.AddMat2Sp(1.0, P, kTrans, W, 0.0);
    Bproj2.AddMat2Sp(1.0, P, kTrans, B, 0.0);
  
    Matrix<double> Ptrans(P, kTrans);
  
    SpMatrix<double> Wproj2mod(Wproj2), Bproj2mod(Bproj2);
  
    for (int32 i = 0; i < dim; i++) {
      // For this eigenvalue, compute the within-class covar projected with this direction,
      // and the same for between.
      BaseFloat within = Wproj2(i, i),
          between = Bproj2(i, i);
      KALDI_LOG << "For " << i << "'th eigenvalue, value is " << s(i)
                << ", within-class covar in this direction is " << within
                << ", between-class is " << between;
      if (s(i) > 1.0) {
        double excess_eig = s(i) - 1.0;
        double excess_within_covar = excess_eig * config.within_covar_scale,
            excess_between_covar = excess_eig * config.between_covar_scale;
        Wproj2mod(i, i) += excess_within_covar;
        Bproj2mod(i, i) += excess_between_covar;
      } /*
          Below I was considering a method like below, to try to scale up
          the dimensions that had less variance than expected in our sample..
          this didn't help, and actually when I set that power to +0.2 instead
          of -0.5 it gave me an improvement on sre08.  But I'm not sure
          about this.. it just doesn't seem right.
        else {
        BaseFloat scale = pow(std::max(1.0e-10, s(i)), -0.5);
        BaseFloat max_scale = 10.0;  // I'll make this configurable later.
        scale = std::min(scale, max_scale);
        Ptrans.Row(i).Scale(scale);
        } */
    }
  
    // combined transform "transform_mod" and then P^T that takes us to the space
    // where {W,B}proj2{,mod} are.
    Matrix<double> combined_trans(dim, dim);
    combined_trans.AddMatMat(1.0, Ptrans, kNoTrans,
                             transform_mod, kNoTrans, 0.0);
    Matrix<double> combined_trans_inv(combined_trans);  // ... and its inverse.
    combined_trans_inv.Invert();
  
    // Wmod and Bmod are as Wproj2 and Bproj2 but taken back into the original
    // iVector space.
    SpMatrix<double> Wmod(dim), Bmod(dim);
    Wmod.AddMat2Sp(1.0, combined_trans_inv, kNoTrans, Wproj2mod, 0.0);
    Bmod.AddMat2Sp(1.0, combined_trans_inv, kNoTrans, Bproj2mod, 0.0);
  
    TpMatrix<double> C(dim);
    // Do Cholesky Wmod = C C^T.  Now if we use C^{-1} as a transform, we have
    // C^{-1} W C^{-T} = I, so it makes the within-class covar unit.
    C.Cholesky(Wmod);
    TpMatrix<double> Cinv(C);
    Cinv.Invert();
  
    // Bmod_proj is Bmod projected by Cinv.
    SpMatrix<double> Bmod_proj(dim);
    Bmod_proj.AddTp2Sp(1.0, Cinv, kNoTrans, Bmod, 0.0);
    Vector<double> psi_new(dim);
    Matrix<double> Q(dim, dim);
    // Do symmetric eigenvalue decomposition of Bmod_proj, so
    // Bmod_proj = Q diag(psi_new) Q^T
    Bmod_proj.Eig(&psi_new, &Q);
    SortSvd(&psi_new, &Q);
    // This means that if we use Q^T as a transform, then Q^T Bmod_proj Q =
    // diag(psi_new), hence Q^T diagonalizes Bmod_proj (while leaving the
    // within-covar unit).
    // The final transform we want, that projects from our original
    // space to our newly normalized space, is:
    // first Cinv, then Q^T, i.e. the
    // matrix Q^T Cinv.
    Matrix<double> final_transform(dim, dim);
    final_transform.AddMatTp(1.0, Q, kTrans, Cinv, kNoTrans, 0.0);
  
    KALDI_LOG << "Old diagonal of between-class covar was: "
              << plda->psi_ << ", new diagonal is "
              << psi_new;
    plda->transform_.CopyFromMat(final_transform);
    plda->psi_.CopyFromVec(psi_new);
  }
  
  } // namespace kaldi