Blame view
src/ivectorbin/agglomerative-cluster.cc
5.42 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
// ivectorbin/agglomerative-cluster.cc // Copyright 2016-2018 David Snyder // 2017-2018 Matthew Maciejewski // 2019 Dogan Can // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "util/stl-utils.h" #include "ivector/agglomerative-clustering.h" int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; try { const char *usage = "Cluster utterances by similarity score, used in diarization. " "Takes a table of score matrices indexed by recording, with the " "rows/columns corresponding to the utterances of that recording in " "sorted order and a reco2utt file that contains the mapping from " "recordings to utterances, and outputs a list of labels in the form " "<utt> <label>. Clustering is done using agglomerative hierarchical " "clustering with a score threshold as stop criterion. By default, the " "program reads in similarity scores, but with --read-costs=true " "the scores are interpreted as costs (i.e. a smaller value indicates " "utterance similarity). " "Usage: agglomerative-cluster [options] <scores-rspecifier> " "<reco2utt-rspecifier> <labels-wspecifier> " "e.g.: " " agglomerative-cluster ark:scores.ark ark:reco2utt " " ark,t:labels.txt "; ParseOptions po(usage); std::string reco2num_spk_rspecifier; BaseFloat threshold = 0.0, max_spk_fraction = 1.0; bool read_costs = false; int32 first_pass_max_utterances = std::numeric_limits<int16>::max(); po.Register("reco2num-spk-rspecifier", &reco2num_spk_rspecifier, "If supplied, clustering creates exactly this many clusters for each" " recording and the option --threshold is ignored."); po.Register("threshold", &threshold, "Merge clusters if their distance" " is less than this threshold."); po.Register("read-costs", &read_costs, "If true, the first" " argument is interpreted as a matrix of costs rather than a" " similarity matrix."); po.Register("first-pass-max-utterances", &first_pass_max_utterances, "If the number of utterances is larger than first-pass-max-utterances," " then clustering is done in two passes. In the first pass, input points" " are divided into contiguous subsets of size first-pass-max-utterances" " and each subset is clustered separately. In the second pass, the first" " pass clusters are merged into the final set of clusters."); po.Register("max-spk-fraction", &max_spk_fraction, "Merge clusters if the" " total fraction of utterances in them is less than this threshold." " This is active only when reco2num-spk-rspecifier is supplied and" " 1.0 / num-spk <= max-spk-fraction <= 1.0."); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string scores_rspecifier = po.GetArg(1), reco2utt_rspecifier = po.GetArg(2), label_wspecifier = po.GetArg(3); SequentialBaseFloatMatrixReader scores_reader(scores_rspecifier); RandomAccessTokenVectorReader reco2utt_reader(reco2utt_rspecifier); RandomAccessInt32Reader reco2num_spk_reader(reco2num_spk_rspecifier); Int32Writer label_writer(label_wspecifier); if (!read_costs) threshold = -threshold; for (; !scores_reader.Done(); scores_reader.Next()) { std::string reco = scores_reader.Key(); Matrix<BaseFloat> costs = scores_reader.Value(); // By default, the scores give the similarity between pairs of // utterances. We need to multiply the scores by -1 to reinterpet // them as costs (unless --read-costs=true) as the agglomerative // clustering code requires. if (!read_costs) costs.Scale(-1); std::vector<std::string> uttlist = reco2utt_reader.Value(reco); std::vector<int32> spk_ids; if (reco2num_spk_rspecifier.size()) { int32 num_speakers = reco2num_spk_reader.Value(reco); if (1.0 / num_speakers <= max_spk_fraction && max_spk_fraction <= 1.0) AgglomerativeCluster(costs, std::numeric_limits<BaseFloat>::max(), num_speakers, first_pass_max_utterances, max_spk_fraction, &spk_ids); else AgglomerativeCluster(costs, std::numeric_limits<BaseFloat>::max(), num_speakers, first_pass_max_utterances, 1.0, &spk_ids); } else { AgglomerativeCluster(costs, threshold, 1, first_pass_max_utterances, 1.0, &spk_ids); } for (int32 i = 0; i < spk_ids.size(); i++) label_writer.Write(uttlist[i], spk_ids[i]); } return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |