Blame view
src/ivectorbin/compute-vad.cc
3.65 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
// ivectorbin/compute-vad.cc // Copyright 2013 Daniel Povey // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "matrix/kaldi-matrix.h" #include "ivector/voice-activity-detection.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using kaldi::int32; const char *usage = "This program reads input features and writes out, for each utterance, " "a vector of floats that are 1.0 if we judge the frame voice and 0.0 " "otherwise. The algorithm is very simple and is based on thresholding " "the log mel energy (and taking the consensus of threshold decisions " "within a window centered on the current frame). See the options for " "more details, and egs/sid/s1/run.sh for examples; this program is " "intended for use in speaker-ID. " " " "Usage: compute-vad [options] <feats-rspecifier> <vad-wspecifier> " "e.g.: compute-vad scp:feats.scp ark:vad.ark "; ParseOptions po(usage); bool omit_unvoiced_utts = false; po.Register("omit-unvoiced-utts", &omit_unvoiced_utts, "If true, do not write out voicing information for " "utterances that were judged 100% unvoiced."); VadEnergyOptions opts; opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string feat_rspecifier = po.GetArg(1); std::string vad_wspecifier = po.GetArg(2); SequentialBaseFloatMatrixReader feat_reader(feat_rspecifier); BaseFloatVectorWriter vad_writer(vad_wspecifier); int32 num_done = 0, num_err = 0; int32 num_unvoiced = 0; double tot_length = 0.0, tot_decision = 0.0; for (;!feat_reader.Done(); feat_reader.Next()) { std::string utt = feat_reader.Key(); Matrix<BaseFloat> feat(feat_reader.Value()); if (feat.NumRows() == 0) { KALDI_WARN << "Empty feature matrix for utterance " << utt; num_err++; continue; } Vector<BaseFloat> vad_result(feat.NumRows()); ComputeVadEnergy(opts, feat, &vad_result); double sum = vad_result.Sum(); if (sum == 0.0) { KALDI_WARN << "No frames were judged voiced for utterance " << utt; num_unvoiced++; } else { num_done++; } tot_decision += vad_result.Sum(); tot_length += vad_result.Dim(); if (!(omit_unvoiced_utts && sum == 0)) { vad_writer.Write(utt, vad_result); } } KALDI_LOG << "Applied energy based voice activity detection; " << "processed " << num_done << " utterances successfully; " << num_err << " had empty features, and " << num_unvoiced << " were completely unvoiced."; KALDI_LOG << "Proportion of voiced frames was " << (tot_decision / tot_length) << " over " << tot_length << " frames."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |