Blame view

src/ivectorbin/ivector-extract-online.cc 6.25 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
  // ivectorbin/ivector-extract-online.cc
  
  // Copyright 2014  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "gmm/am-diag-gmm.h"
  #include "ivector/ivector-extractor.h"
  #include "util/kaldi-thread.h"
  
  int main(int argc, char *argv[]) {
    using namespace kaldi;
    typedef kaldi::int32 int32;
    typedef kaldi::int64 int64;
    try {
      const char *usage =
          "Extract iVectors for utterances, using a trained iVector extractor,
  "
          "and features and Gaussian-level posteriors.  This version extracts an
  "
          "iVector every n frames (see the --ivector-period option), by including
  "
          "all frames up to that point in the utterance.  This is designed to
  "
          "correspond with what will happen in a streaming decoding scenario;
  "
          "the iVectors would be used in neural net training.  The iVectors are
  "
          "output as an archive of matrices, indexed by utterance-id; each row
  "
          "corresponds to an iVector.
  "
          "See also ivector-extract-online2
  "
          "
  "
          "Usage:  ivector-extract-online [options] <model-in> <feature-rspecifier>"
          "<posteriors-rspecifier> <ivector-wspecifier>
  "
          "e.g.: 
  "
          " gmm-global-get-post 1.dubm '$feats' ark:- | \\
  "
          "  ivector-extract-online --ivector-period=10 final.ie '$feats' ark,s,cs:- ark,t:ivectors.1.ark
  ";
  
      ParseOptions po(usage);
      int32 num_cg_iters = 15;
      int32 ivector_period = 10;
      BaseFloat max_count = 0.0;
      g_num_threads = 8;
  
      po.Register("num-cg-iters", &num_cg_iters,
                  "Number of iterations of conjugate gradient descent to perform "
                  "each time we re-estimate the iVector.");
      po.Register("ivector-period", &ivector_period,
                  "Controls how frequently we re-estimate the iVector as we get "
                  "more data.");
      po.Register("num-threads", &g_num_threads,
                  "Number of threads to use for computing derived variables "
                  "of iVector extractor, at process start-up.");
      po.Register("max-count", &max_count,
                  "If >0, when the count of posteriors exceeds max-count we will "
                  "start using a stronger prior term.  Can make iVectors from "
                  "longer than normal utterances look more 'typical'.  Interpret "
                  "this value as a number of frames multiplied by your "
                  "posterior scale (so typically 0.1 times a number of frames).");
      po.Read(argc, argv);
  
      if (po.NumArgs() != 4) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string ivector_extractor_rxfilename = po.GetArg(1),
          feature_rspecifier = po.GetArg(2),
          posteriors_rspecifier = po.GetArg(3),
          ivectors_wspecifier = po.GetArg(4);
  
      IvectorExtractor extractor;
      ReadKaldiObject(ivector_extractor_rxfilename, &extractor);
  
      double tot_objf_impr = 0.0, tot_t = 0.0, tot_length = 0.0,
          tot_length_utt_end = 0.0;
      int32 num_done = 0, num_err = 0;
  
      SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
      RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier);
      BaseFloatMatrixWriter ivector_writer(ivectors_wspecifier);
  
  
      for (; !feature_reader.Done(); feature_reader.Next()) {
        std::string utt = feature_reader.Key();
        if (!posteriors_reader.HasKey(utt)) {
          KALDI_WARN << "No posteriors for utterance " << utt;
          num_err++;
          continue;
        }
        const Matrix<BaseFloat> &feats = feature_reader.Value();
        const Posterior &posterior = posteriors_reader.Value(utt);
  
        if (static_cast<int32>(posterior.size()) != feats.NumRows()) {
          KALDI_WARN << "Size mismatch between posterior " << posterior.size()
                     << " and features " << feats.NumRows() << " for utterance "
                     << utt;
          num_err++;
          continue;
        }
  
  
        Matrix<BaseFloat> ivectors;
        double objf_impr_per_frame;
        objf_impr_per_frame = EstimateIvectorsOnline(feats, posterior, extractor,
                                                     ivector_period, num_cg_iters,
                                                     max_count, &ivectors);
  
        BaseFloat offset = extractor.PriorOffset();
        for (int32 i = 0 ; i < ivectors.NumRows(); i++)
          ivectors(i, 0) -= offset;
  
        double tot_post = TotalPosterior(posterior);
  
        KALDI_VLOG(2) << "For utterance " << utt << " objf impr/frame is "
                      << objf_impr_per_frame << " per frame, over "
                      << tot_post << " frames (weighted).";
  
        ivector_writer.Write(utt, ivectors);
  
        tot_t += tot_post;
        tot_objf_impr += objf_impr_per_frame * tot_post;
        tot_length_utt_end += ivectors.Row(ivectors.NumRows() - 1).Norm(2.0) *
            tot_post;
        for (int32 i = 0; i < ivectors.NumRows(); i++)
          tot_length += ivectors.Row(i).Norm(2.0) * tot_post / ivectors.NumRows();
  
        num_done++;
      }
  
      KALDI_LOG << "Estimated iVectors for " << num_done << " files, " << num_err
                << " with errors.";
      KALDI_LOG << "Average objective-function improvement was "
                << (tot_objf_impr / tot_t) << " per frame, over "
                << tot_t << " frames (weighted).";
      KALDI_LOG << "Average iVector length was " << (tot_length / tot_t)
                << " and at utterance-end was " << (tot_length_utt_end / tot_t)
                << ", over " << tot_t << " frames (weighted); "
                << " expected length is " << sqrt(extractor.IvectorDim());
  
      return (num_done != 0 ? 0 : 1);
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }