Blame view
src/ivectorbin/ivector-plda-scoring.cc
8.61 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
// ivectorbin/ivector-plda-scoring.cc // Copyright 2013 Daniel Povey // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "ivector/plda.h" int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; typedef std::string string; try { const char *usage = "Computes log-likelihood ratios for trials using PLDA model " "Note: the 'trials-file' has lines of the form " "<key1> <key2> " "and the output will have the form " "<key1> <key2> [<dot-product>] " "(if either key could not be found, the dot-product field in the output " "will be absent, and this program will print a warning) " "For training examples, the input is the iVectors averaged over speakers; " "a separate archive containing the number of utterances per speaker may be " "optionally supplied using the --num-utts option; this affects the PLDA " "scoring (if not supplied, it defaults to 1 per speaker). " " " "Usage: ivector-plda-scoring <plda> <train-ivector-rspecifier> <test-ivector-rspecifier> " " <trials-rxfilename> <scores-wxfilename> " " " "e.g.: ivector-plda-scoring --num-utts=ark:exp/train/num_utts.ark plda " "ark:exp/train/spk_ivectors.ark ark:exp/test/ivectors.ark trials scores " "See also: ivector-compute-dot-products, ivector-compute-plda "; ParseOptions po(usage); std::string num_utts_rspecifier; PldaConfig plda_config; plda_config.Register(&po); po.Register("num-utts", &num_utts_rspecifier, "Table to read the number of " "utterances per speaker, e.g. ark:num_utts.ark "); po.Read(argc, argv); if (po.NumArgs() != 5) { po.PrintUsage(); exit(1); } std::string plda_rxfilename = po.GetArg(1), train_ivector_rspecifier = po.GetArg(2), test_ivector_rspecifier = po.GetArg(3), trials_rxfilename = po.GetArg(4), scores_wxfilename = po.GetArg(5); // diagnostics: double tot_test_renorm_scale = 0.0, tot_train_renorm_scale = 0.0; int64 num_train_ivectors = 0, num_train_errs = 0, num_test_ivectors = 0; int64 num_trials_done = 0, num_trials_err = 0; Plda plda; ReadKaldiObject(plda_rxfilename, &plda); int32 dim = plda.Dim(); SequentialBaseFloatVectorReader train_ivector_reader(train_ivector_rspecifier); SequentialBaseFloatVectorReader test_ivector_reader(test_ivector_rspecifier); RandomAccessInt32Reader num_utts_reader(num_utts_rspecifier); typedef unordered_map<string, Vector<BaseFloat>*, StringHasher> HashType; // These hashes will contain the iVectors in the PLDA subspace // (that makes the within-class variance unit and diagonalizes the // between-class covariance). They will also possibly be length-normalized, // depending on the config. HashType train_ivectors, test_ivectors; KALDI_LOG << "Reading train iVectors"; for (; !train_ivector_reader.Done(); train_ivector_reader.Next()) { std::string spk = train_ivector_reader.Key(); if (train_ivectors.count(spk) != 0) { KALDI_ERR << "Duplicate training iVector found for speaker " << spk; } const Vector<BaseFloat> &ivector = train_ivector_reader.Value(); int32 num_examples; if (!num_utts_rspecifier.empty()) { if (!num_utts_reader.HasKey(spk)) { KALDI_WARN << "Number of utterances not given for speaker " << spk; num_train_errs++; continue; } num_examples = num_utts_reader.Value(spk); } else { num_examples = 1; } Vector<BaseFloat> *transformed_ivector = new Vector<BaseFloat>(dim); tot_train_renorm_scale += plda.TransformIvector(plda_config, ivector, num_examples, transformed_ivector); train_ivectors[spk] = transformed_ivector; num_train_ivectors++; } KALDI_LOG << "Read " << num_train_ivectors << " training iVectors, " << "errors on " << num_train_errs; if (num_train_ivectors == 0) KALDI_ERR << "No training iVectors present."; KALDI_LOG << "Average renormalization scale on training iVectors was " << (tot_train_renorm_scale / num_train_ivectors); KALDI_LOG << "Reading test iVectors"; for (; !test_ivector_reader.Done(); test_ivector_reader.Next()) { std::string utt = test_ivector_reader.Key(); if (test_ivectors.count(utt) != 0) { KALDI_ERR << "Duplicate test iVector found for utterance " << utt; } const Vector<BaseFloat> &ivector = test_ivector_reader.Value(); int32 num_examples = 1; // this value is always used for test (affects the // length normalization in the TransformIvector // function). Vector<BaseFloat> *transformed_ivector = new Vector<BaseFloat>(dim); tot_test_renorm_scale += plda.TransformIvector(plda_config, ivector, num_examples, transformed_ivector); test_ivectors[utt] = transformed_ivector; num_test_ivectors++; } KALDI_LOG << "Read " << num_test_ivectors << " test iVectors."; if (num_test_ivectors == 0) KALDI_ERR << "No test iVectors present."; KALDI_LOG << "Average renormalization scale on test iVectors was " << (tot_test_renorm_scale / num_test_ivectors); Input ki(trials_rxfilename); bool binary = false; Output ko(scores_wxfilename, binary); double sum = 0.0, sumsq = 0.0; std::string line; while (std::getline(ki.Stream(), line)) { std::vector<std::string> fields; SplitStringToVector(line, " \t \r", true, &fields); if (fields.size() != 2) { KALDI_ERR << "Bad line " << (num_trials_done + num_trials_err) << "in input (expected two fields: key1 key2): " << line; } std::string key1 = fields[0], key2 = fields[1]; if (train_ivectors.count(key1) == 0) { KALDI_WARN << "Key " << key1 << " not present in training iVectors."; num_trials_err++; continue; } if (test_ivectors.count(key2) == 0) { KALDI_WARN << "Key " << key2 << " not present in test iVectors."; num_trials_err++; continue; } const Vector<BaseFloat> *train_ivector = train_ivectors[key1], *test_ivector = test_ivectors[key2]; Vector<double> train_ivector_dbl(*train_ivector), test_ivector_dbl(*test_ivector); int32 num_train_examples; if (!num_utts_rspecifier.empty()) { // we already checked that it has this key. num_train_examples = num_utts_reader.Value(key1); } else { num_train_examples = 1; } BaseFloat score = plda.LogLikelihoodRatio(train_ivector_dbl, num_train_examples, test_ivector_dbl); sum += score; sumsq += score * score; num_trials_done++; ko.Stream() << key1 << ' ' << key2 << ' ' << score << std::endl; } for (HashType::iterator iter = train_ivectors.begin(); iter != train_ivectors.end(); ++iter) delete iter->second; for (HashType::iterator iter = test_ivectors.begin(); iter != test_ivectors.end(); ++iter) delete iter->second; if (num_trials_done != 0) { BaseFloat mean = sum / num_trials_done, scatter = sumsq / num_trials_done, variance = scatter - mean * mean, stddev = sqrt(variance); KALDI_LOG << "Mean score was " << mean << ", standard deviation was " << stddev; } KALDI_LOG << "Processed " << num_trials_done << " trials, " << num_trials_err << " had errors."; return (num_trials_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |