Blame view

src/ivectorbin/ivector-transform.cc 3.72 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
  // ivectorbin/ivector-transform.cc
  
  // Copyright 2013  Daniel Povey
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "gmm/am-diag-gmm.h"
  #include "ivector/ivector-extractor.h"
  #include "util/kaldi-thread.h"
  
  
  int main(int argc, char *argv[]) {
    using namespace kaldi;
    typedef kaldi::int32 int32;
    try {
      const char *usage =
          "Multiplies iVectors (on the left) by a supplied transformation matrix
  "
          "
  "
          "Usage:  ivector-transform [options] <matrix-in> <ivector-rspecifier>"
          "<ivector-wspecifier>
  "
          "e.g.: 
  "
          " ivector-transform transform.mat ark:ivectors.ark ark:transformed_ivectors.ark
  ";
  
      ParseOptions po(usage);
  
      po.Read(argc, argv);
  
      if (po.NumArgs() != 3) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string matrix_rxfilename = po.GetArg(1),
          ivector_rspecifier = po.GetArg(2),
          ivector_wspecifier = po.GetArg(3);
  
  
      Matrix<BaseFloat> transform;
      ReadKaldiObject(matrix_rxfilename, &transform);
  
      int32 num_done = 0;
  
      // The following quantities will be needed if we're doing
      // an affine transform (i.e. linear plus an offset)
      SubMatrix<BaseFloat> linear_term(transform,
                                       0, transform.NumRows(),
                                       0, transform.NumCols() - 1);
      Vector<BaseFloat> constant_term(transform.NumRows());
      constant_term.CopyColFromMat(transform, transform.NumCols() - 1);
  
      Vector<double> sum(transform.NumRows());
      double sumsq = 0.0;
  
      SequentialBaseFloatVectorReader ivector_reader(ivector_rspecifier);
      BaseFloatVectorWriter ivector_writer(ivector_wspecifier);
  
      for (; !ivector_reader.Done(); ivector_reader.Next()) {
        std::string key = ivector_reader.Key();
        const Vector<BaseFloat> &ivector = ivector_reader.Value();
  
        Vector<BaseFloat> transformed_ivector(transform.NumRows());
        if (ivector.Dim() == transform.NumCols()) {
          transformed_ivector.AddMatVec(1.0, transform, kNoTrans, ivector, 0.0);
        } else {
          KALDI_ASSERT(ivector.Dim() == transform.NumCols() - 1);
          transformed_ivector.CopyFromVec(constant_term);
          transformed_ivector.AddMatVec(1.0, linear_term, kNoTrans, ivector, 1.0);
        }
        sum.AddVec(1.0, transformed_ivector);
        sumsq += VecVec(transformed_ivector, transformed_ivector);
        ivector_writer.Write(key, transformed_ivector);
        num_done++;
      }
  
      KALDI_LOG << "Processed " << num_done << " iVectors.";
      if (num_done != 0) {
        sum.Scale(1.0 / num_done);
        sumsq /= num_done;
        BaseFloat mean_length = sum.Norm(2.0),
            variance = sumsq - VecVec(sum, sum),
            avg_len = sqrt(variance),
            norm_length = avg_len / sqrt(transform.NumRows());
        KALDI_LOG << "Norm of mean was " << mean_length
                  << " (should be close to zero), length divided by sqrt(dim) was "
                  << norm_length << " (should probably be close to one)";
      }
      return (num_done != 0 ? 0 : 1);
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }