Blame view
src/ivectorbin/logistic-regression-copy.cc
2.55 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
// ivectorbin/logistic-regression-copy.cc // Copyright 2014 Daniel Povey // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "ivector/logistic-regression.h" int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; try { const char *usage = "Copy a logistic-regression model, possibly changing the binary mode; " "also supports the --scale-priors option which can scale the prior probabilities " "the model assigns to different classes (e.g., you can remove the effect of " "unbalanced training data by scaling by the inverse of the class priors in the " "training data) " "Usage: logistic-regression-copy [options] <model-in> <model-out> " "e.g.: echo '[ 2.6 1.7 3.9 1.24 7.5 ]' | logistic-regression-copy --scale-priors=- \\ " " 1.model scaled_priors.mdl "; ParseOptions po(usage); bool binary = true; std::string scale_priors_rxfilename; po.Register("binary", &binary, "Write output in binary mode"); po.Register("scale-priors", &scale_priors_rxfilename, "(extended) filename for file " "containing a vector of prior-scales (e.g. inverses of training priors)"); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string model_rxfilename = po.GetArg(1), model_wxfilename = po.GetArg(2); LogisticRegression model; ReadKaldiObject(model_rxfilename, &model); if (scale_priors_rxfilename != "") { Vector<BaseFloat> prior_scales; ReadKaldiObject(scale_priors_rxfilename, &prior_scales); model.ScalePriors(prior_scales); } WriteKaldiObject(model, model_wxfilename, binary); KALDI_LOG << "Wrote model to " << PrintableWxfilename(model_wxfilename); return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |