Blame view

src/ivectorbin/logistic-regression-copy.cc 2.55 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
  // ivectorbin/logistic-regression-copy.cc
  
  // Copyright 2014  Daniel Povey
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "ivector/logistic-regression.h"
  
  
  int main(int argc, char *argv[]) {
    using namespace kaldi;
    typedef kaldi::int32 int32;
    try {
      const char *usage =
          "Copy a logistic-regression model, possibly changing the binary mode;
  "
          "also supports the --scale-priors option which can scale the prior probabilities
  "
          "the model assigns to different classes (e.g., you can remove the effect of
  "
          "unbalanced training data by scaling by the inverse of the class priors in the
  "
          "training data)
  "
          "Usage: logistic-regression-copy [options] <model-in> <model-out>
  "
          "e.g.: echo '[ 2.6 1.7 3.9 1.24 7.5 ]' | logistic-regression-copy --scale-priors=- \\
  "
          "  1.model scaled_priors.mdl
  ";
  
      ParseOptions po(usage);
  
      bool binary = true;
      std::string scale_priors_rxfilename;
  
      po.Register("binary", &binary, "Write output in binary mode");
      po.Register("scale-priors", &scale_priors_rxfilename, "(extended) filename for file "
                  "containing a vector of prior-scales (e.g. inverses of training priors)");
  
      po.Read(argc, argv);
  
      if (po.NumArgs() != 2) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string model_rxfilename = po.GetArg(1),
          model_wxfilename = po.GetArg(2);
  
  
      LogisticRegression model;
      ReadKaldiObject(model_rxfilename, &model);
  
      if (scale_priors_rxfilename != "") {
        Vector<BaseFloat> prior_scales;
        ReadKaldiObject(scale_priors_rxfilename, &prior_scales);
        model.ScalePriors(prior_scales);
      }
  
      WriteKaldiObject(model, model_wxfilename, binary);
  
      KALDI_LOG << "Wrote model to " << PrintableWxfilename(model_wxfilename);
      return 0;
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }