Blame view
src/ivectorbin/logistic-regression-eval.cc
4.93 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
// ivectorbin/logistic-regression-eval.cc // Copyright 2014 David Snyder // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "ivector/logistic-regression.h" using namespace kaldi; int ComputeLogPosteriors(ParseOptions &po, const LogisticRegressionConfig &config, bool apply_log) { std::string model = po.GetArg(1), vector_rspecifier = po.GetArg(2), log_posteriors_wspecifier = po.GetArg(3); LogisticRegression classifier; ReadKaldiObject(model, &classifier); std::vector<Vector<BaseFloat> > vectors; SequentialBaseFloatVectorReader vector_reader(vector_rspecifier); BaseFloatVectorWriter posterior_writer(log_posteriors_wspecifier); std::vector<std::string> utt_list; int32 num_utt_done = 0; for (; !vector_reader.Done(); vector_reader.Next()) { std::string utt = vector_reader.Key(); const Vector<BaseFloat> &vector = vector_reader.Value(); Vector<BaseFloat> log_posteriors; classifier.GetLogPosteriors(vector, &log_posteriors); if (!apply_log) log_posteriors.ApplyExp(); posterior_writer.Write(utt, log_posteriors); num_utt_done++; } KALDI_LOG << "Calculated log posteriors for " << num_utt_done << " vectors."; return (num_utt_done == 0 ? 1 : 0); } int32 ComputeScores(ParseOptions &po, const LogisticRegressionConfig &config, bool apply_log) { std::string model_rspecifier = po.GetArg(1), trials_rspecifier = po.GetArg(2), vector_rspecifier = po.GetArg(3), scores_out = po.GetArg(4); SequentialInt32Reader class_reader(trials_rspecifier); LogisticRegression classifier = LogisticRegression(); ReadKaldiObject(model_rspecifier, &classifier); std::vector<Vector<BaseFloat> > vectors; std::vector<int32> ys; std::vector<std::string> utt_list; int32 num_utt_done = 0, num_utt_err = 0; RandomAccessBaseFloatVectorReader vector_reader(vector_rspecifier); for (; !class_reader.Done(); class_reader.Next()) { std::string utt = class_reader.Key(); int32 class_label = class_reader.Value(); if (!vector_reader.HasKey(utt)) { KALDI_WARN << "No vector for utterance " << utt; num_utt_err++; } else { utt_list.push_back(utt); ys.push_back(class_label); const Vector<BaseFloat> &vector = vector_reader.Value(utt); vectors.push_back(vector); num_utt_done++; } } if (vectors.empty()) { KALDI_WARN << "Read no input"; return 1; } Matrix<BaseFloat> xs(vectors.size(), vectors[0].Dim()); for (int i = 0; i < vectors.size(); i++) { xs.Row(i).CopyFromVec(vectors[i]); } Matrix<BaseFloat> log_posteriors; classifier.GetLogPosteriors(xs, &log_posteriors); bool binary = false; Output ko(scores_out.c_str(), binary); if (!apply_log) log_posteriors.ApplyExp(); for (int i = 0; i < ys.size(); i++) { ko.Stream() << utt_list[i] << " " << ys[i] << " " << log_posteriors(i, ys[i]) << std::endl; } KALDI_LOG << "Calculated scores for " << num_utt_done << " vectors with " << num_utt_err << " missing. "; return (num_utt_done == 0 ? 1 : 0); } int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; try { const char *usage = "Evaluates a model on input vectors and outputs either " "log posterior probabilities or scores. " "Usage1: logistic-regression-eval <model> <input-vectors-rspecifier> " " <output-log-posteriors-wspecifier> " "Usage2: logistic-regression-eval <model> <trials-file> <input-vectors-rspecifier> " " <output-scores-file> "; ParseOptions po(usage); bool apply_log = true; po.Register("apply-log", &apply_log, "If false, apply Exp to the log posteriors output. This is " "helpful when combining posteriors from multiple logistic " "regression models."); LogisticRegressionConfig config; config.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 3 && po.NumArgs() != 4) { po.PrintUsage(); exit(1); } if (po.NumArgs() == 4) { return ComputeScores(po, config, apply_log); } else { return ComputeLogPosteriors(po, config, apply_log); } } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |