Blame view

src/ivectorbin/merge-vads.cc 6.15 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
  // ivectorbin/merge-vads.cc
  
  // Copyright  2015 David Snyder
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "matrix/kaldi-matrix.h"
  #include "util/stl-utils.h"
  
  namespace kaldi {
  
  /**
     PrepareMap creates a mapping between the pairs of VAD decisions and
     the output label.  If map_rxfilename is empty, we create a mapping
     in which a frame is only classified as speech (represented as "1") if
     both VAD decisions agree on speech, and nonspeech (represented as "0")
     otherwise.  If map_rxfilename is not empty, then that table provides
     the mapping.  If the first set of VAD decisions has N classes and the
     second has M classes, then the table needs to have NxM rows, and three
     columns.  The first two columns correspond to the labels in the first
     and second VAD decisions respectively, and the last column is the
     resultant output label. For example:
       0 0 0
       0 1 0
       0 2 0
       1 0 0
       1 1 1
       1 2 1
  */
  void PrepareMap(const std::string map_rxfilename,
    unordered_map<std::pair<int32, int32>, int32, PairHasher<int32> > *map) {
    Input map_input(map_rxfilename);
  
    // If a map file isn't specified, provide an obvious mapping.  The
    // following mapping assumes "0" corresponds to nonspeech and "1"
    // corresponds to speech. The combination of two VAD decisions only
    // results in a decision of speech if both input frames are
    // classified as speech.
    if (map_rxfilename.empty()) {
      (*map)[std::pair<int32, int32>(0, 0)] = 0;
      (*map)[std::pair<int32, int32>(0, 1)] = 0;
      (*map)[std::pair<int32, int32>(1, 0)] = 0;
      (*map)[std::pair<int32, int32>(1, 1)] = 1;
    } else {
      std::string line;
      while (std::getline(map_input.Stream(), line)) {
        if (line.size() == 0) continue;
        int32 start = line.find_first_not_of(" \t");
        int32 end = line.find_first_of('#');
        if (start == std::string::npos || start == end) continue;
        end = line.find_last_not_of(" \t", end - 1);
        KALDI_ASSERT(end >= start);
        std::vector<std::string> fields;
        SplitStringToVector(line.substr(start, end - start + 1),
           " \t
  \r", true, &fields);
        if (fields.size() != 3) {
          KALDI_ERR << "Bad line. Expected three fields, got: "
                    << line;
        }
        int32 label1 = std::atoi(fields[0].c_str()),
              label2 = std::atoi(fields[1].c_str()),
              result_label = std::atoi(fields[2].c_str());
        (*map)[std::pair<int32, int32>(label1, label2)] = result_label;
      }
    }
  }
  
  }
  
  int main(int argc, char *argv[]) {
    using namespace kaldi;
    typedef kaldi::int32 int32;
    try {
      const char *usage =
        "This program merges two archives of per-frame weights representing
  "
        "voice activity decisions.  By default, the program assumes that the
  "
        "input vectors consist of floats that are 0.0 if a frame is judged
  "
        "as nonspeech and 1.0 if it is considered speech.  The default
  "
        "behavior produces a frame-level decision of 1.0 if both input frames
  "
        "are 1.0, and 0.0 otherwise.  Additional classes (e.g., 2.0 for music)
  "
        "can be handled using the \"map\" option.
  "
        "
  "
        "Usage: merge-vads [options] <vad-rspecifier-1> <vad-rspecifier-2>
  "
        "    <vad-wspecifier>
  "
        "e.g.: merge-vads [options] scp:vad_energy.scp scp:vad_gmm.scp
  "
        "    ark:vad.ark
  "
        "See also: compute-vad-from-frame-likes, compute-vad, ali-to-post,
  "
        "post-to-weights
  ";
  
      ParseOptions po(usage);
      std::string map_rxfilename;
      po.Register("map", &map_rxfilename, "This table specifies a mapping "
        "between the labels of the frame-level decisions in the first and "
        "second input archives to the integer output label.");
  
      po.Read(argc, argv);
      if (po.NumArgs() != 3) {
        po.PrintUsage();
        exit(1);
      }
  
      unordered_map<std::pair<int32, int32>, int32, PairHasher<int32> > map;
      PrepareMap(map_rxfilename, &map);
      SequentialBaseFloatVectorReader first_vad_reader(po.GetArg(1));
      RandomAccessBaseFloatVectorReader second_vad_reader(po.GetArg(2));
      BaseFloatVectorWriter vad_writer(po.GetArg(3));
  
      int32 num_done = 0, num_err = 0;
      for (;!first_vad_reader.Done(); first_vad_reader.Next()) {
        std::string utt = first_vad_reader.Key();
        Vector<BaseFloat> vad1(first_vad_reader.Value());
        if (!second_vad_reader.HasKey(utt)) {
          KALDI_WARN << "No vector for utterance " << utt;
          num_err++;
          continue;
        }
        Vector<BaseFloat> vad2(second_vad_reader.Value(utt));
        if (vad1.Dim() != vad2.Dim()) {
          KALDI_WARN << "VAD length mismatch for utterance " << utt;
          num_err++;
          continue;
        }
        Vector<BaseFloat> vad_result(vad1.Dim());
        for (int32 i = 0; i < vad1.Dim(); i++) {
          std::pair<int32, int32> key(static_cast<int32>(vad1(i)),
            static_cast<int32>(vad2(i)));
          unordered_map<std::pair<int32, int32>, int32,
            PairHasher<int32> >::const_iterator iter = map.find(key);
          if (iter == map.end()) {
            KALDI_ERR << "Map is missing combination "
                      << vad1(i) << " and " << vad2(i);
          } else {
            vad_result(i) = iter->second;
          }
        }
  
        vad_writer.Write(utt, vad_result);
        num_done++;
      }
      KALDI_LOG << "Merged voice activity detection decisions; "
                << "processed " << num_done << " utterances successfully; "
                << num_err << " had errors.";
      return (num_done != 0 ? 0 : 1);
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }