Blame view
src/lat/lattice-functions.cc
64 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 |
// lat/lattice-functions.cc // Copyright 2009-2011 Saarland University (Author: Arnab Ghoshal) // 2012-2013 Johns Hopkins University (Author: Daniel Povey); Chao Weng; // Bagher BabaAli // 2013 Cisco Systems (author: Neha Agrawal) [code modified // from original code in ../gmmbin/gmm-rescore-lattice.cc] // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "lat/lattice-functions.h" #include "hmm/transition-model.h" #include "util/stl-utils.h" #include "base/kaldi-math.h" #include "hmm/hmm-utils.h" namespace kaldi { using std::map; using std::vector; void GetPerFrameAcousticCosts(const Lattice &nbest, Vector<BaseFloat> *per_frame_loglikes) { using namespace fst; typedef Lattice::Arc::Weight Weight; vector<BaseFloat> loglikes; int32 cur_state = nbest.Start(); int32 prev_frame = -1; BaseFloat eps_acwt = 0.0; while(1) { Weight w = nbest.Final(cur_state); if (w != Weight::Zero()) { KALDI_ASSERT(nbest.NumArcs(cur_state) == 0); if (per_frame_loglikes != NULL) { SubVector<BaseFloat> subvec(&(loglikes[0]), loglikes.size()); Vector<BaseFloat> vec(subvec); *per_frame_loglikes = vec; } break; } else { KALDI_ASSERT(nbest.NumArcs(cur_state) == 1); fst::ArcIterator<Lattice> iter(nbest, cur_state); const Lattice::Arc &arc = iter.Value(); BaseFloat acwt = arc.weight.Value2(); if (arc.ilabel != 0) { if (eps_acwt > 0) { acwt += eps_acwt; eps_acwt = 0.0; } loglikes.push_back(acwt); prev_frame++; } else if (acwt == acwt){ if (prev_frame > -1) { loglikes[prev_frame] += acwt; } else { eps_acwt += acwt; } } cur_state = arc.nextstate; } } } int32 LatticeStateTimes(const Lattice &lat, vector<int32> *times) { if (!lat.Properties(fst::kTopSorted, true)) KALDI_ERR << "Input lattice must be topologically sorted."; KALDI_ASSERT(lat.Start() == 0); int32 num_states = lat.NumStates(); times->clear(); times->resize(num_states, -1); (*times)[0] = 0; for (int32 state = 0; state < num_states; state++) { int32 cur_time = (*times)[state]; for (fst::ArcIterator<Lattice> aiter(lat, state); !aiter.Done(); aiter.Next()) { const LatticeArc &arc = aiter.Value(); if (arc.ilabel != 0) { // Non-epsilon input label on arc // next time instance if ((*times)[arc.nextstate] == -1) { (*times)[arc.nextstate] = cur_time + 1; } else { KALDI_ASSERT((*times)[arc.nextstate] == cur_time + 1); } } else { // epsilon input label on arc // Same time instance if ((*times)[arc.nextstate] == -1) (*times)[arc.nextstate] = cur_time; else KALDI_ASSERT((*times)[arc.nextstate] == cur_time); } } } return (*std::max_element(times->begin(), times->end())); } int32 CompactLatticeStateTimes(const CompactLattice &lat, vector<int32> *times) { if (!lat.Properties(fst::kTopSorted, true)) KALDI_ERR << "Input lattice must be topologically sorted."; KALDI_ASSERT(lat.Start() == 0); int32 num_states = lat.NumStates(); times->clear(); times->resize(num_states, -1); (*times)[0] = 0; int32 utt_len = -1; for (int32 state = 0; state < num_states; state++) { int32 cur_time = (*times)[state]; for (fst::ArcIterator<CompactLattice> aiter(lat, state); !aiter.Done(); aiter.Next()) { const CompactLatticeArc &arc = aiter.Value(); int32 arc_len = static_cast<int32>(arc.weight.String().size()); if ((*times)[arc.nextstate] == -1) (*times)[arc.nextstate] = cur_time + arc_len; else KALDI_ASSERT((*times)[arc.nextstate] == cur_time + arc_len); } if (lat.Final(state) != CompactLatticeWeight::Zero()) { int32 this_utt_len = (*times)[state] + lat.Final(state).String().size(); if (utt_len == -1) utt_len = this_utt_len; else { if (this_utt_len != utt_len) { KALDI_WARN << "Utterance does not " "seem to have a consistent length."; utt_len = std::max(utt_len, this_utt_len); } } } } if (utt_len == -1) { KALDI_WARN << "Utterance does not have a final-state."; return 0; } return utt_len; } bool ComputeCompactLatticeAlphas(const CompactLattice &clat, vector<double> *alpha) { using namespace fst; // typedef the arc, weight types typedef CompactLattice::Arc Arc; typedef Arc::Weight Weight; typedef Arc::StateId StateId; //Make sure the lattice is topologically sorted. if (clat.Properties(fst::kTopSorted, true) == 0) { KALDI_WARN << "Input lattice must be topologically sorted."; return false; } if (clat.Start() != 0) { KALDI_WARN << "Input lattice must start from state 0."; return false; } int32 num_states = clat.NumStates(); (*alpha).resize(0); (*alpha).resize(num_states, kLogZeroDouble); // Now propagate alphas forward. Note that we don't acount the weight of the // final state to alpha[final_state] -- we acount it to beta[final_state]; (*alpha)[0] = 0.0; for (StateId s = 0; s < num_states; s++) { double this_alpha = (*alpha)[s]; for (ArcIterator<CompactLattice> aiter(clat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); double arc_like = -(arc.weight.Weight().Value1() + arc.weight.Weight().Value2()); (*alpha)[arc.nextstate] = LogAdd((*alpha)[arc.nextstate], this_alpha + arc_like); } } return true; } bool ComputeCompactLatticeBetas(const CompactLattice &clat, vector<double> *beta) { using namespace fst; // typedef the arc, weight types typedef CompactLattice::Arc Arc; typedef Arc::Weight Weight; typedef Arc::StateId StateId; // Make sure the lattice is topologically sorted. if (clat.Properties(fst::kTopSorted, true) == 0) { KALDI_WARN << "Input lattice must be topologically sorted."; return false; } if (clat.Start() != 0) { KALDI_WARN << "Input lattice must start from state 0."; return false; } int32 num_states = clat.NumStates(); (*beta).resize(0); (*beta).resize(num_states, kLogZeroDouble); // Now propagate betas backward. Note that beta[final_state] contains the // weight of the final state in the lattice -- compare that with alpha. for (StateId s = num_states-1; s >= 0; s--) { Weight f = clat.Final(s); double this_beta = -(f.Weight().Value1()+f.Weight().Value2()); for (ArcIterator<CompactLattice> aiter(clat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); double arc_like = -(arc.weight.Weight().Value1()+arc.weight.Weight().Value2()); double arc_beta = (*beta)[arc.nextstate] + arc_like; this_beta = LogAdd(this_beta, arc_beta); } (*beta)[s] = this_beta; } return true; } template<class LatType> // could be Lattice or CompactLattice bool PruneLattice(BaseFloat beam, LatType *lat) { typedef typename LatType::Arc Arc; typedef typename Arc::Weight Weight; typedef typename Arc::StateId StateId; KALDI_ASSERT(beam > 0.0); if (!lat->Properties(fst::kTopSorted, true)) { if (fst::TopSort(lat) == false) { KALDI_WARN << "Cycles detected in lattice"; return false; } } // We assume states before "start" are not reachable, since // the lattice is topologically sorted. int32 start = lat->Start(); int32 num_states = lat->NumStates(); if (num_states == 0) return false; std::vector<double> forward_cost(num_states, std::numeric_limits<double>::infinity()); // viterbi forward. forward_cost[start] = 0.0; // lattice can't have cycles so couldn't be // less than this. double best_final_cost = std::numeric_limits<double>::infinity(); // Update the forward probs. // Thanks to Jing Zheng for finding a bug here. for (int32 state = 0; state < num_states; state++) { double this_forward_cost = forward_cost[state]; for (fst::ArcIterator<LatType> aiter(*lat, state); !aiter.Done(); aiter.Next()) { const Arc &arc(aiter.Value()); StateId nextstate = arc.nextstate; KALDI_ASSERT(nextstate > state && nextstate < num_states); double next_forward_cost = this_forward_cost + ConvertToCost(arc.weight); if (forward_cost[nextstate] > next_forward_cost) forward_cost[nextstate] = next_forward_cost; } Weight final_weight = lat->Final(state); double this_final_cost = this_forward_cost + ConvertToCost(final_weight); if (this_final_cost < best_final_cost) best_final_cost = this_final_cost; } int32 bad_state = lat->AddState(); // this state is not final. double cutoff = best_final_cost + beam; // Go backwards updating the backward probs (which share memory with the // forward probs), and pruning arcs and deleting final-probs. We prune arcs // by making them point to the non-final state "bad_state". We'll then use // Trim() to remove unnecessary arcs and states. [this is just easier than // doing it ourselves.] std::vector<double> &backward_cost(forward_cost); for (int32 state = num_states - 1; state >= 0; state--) { double this_forward_cost = forward_cost[state]; double this_backward_cost = ConvertToCost(lat->Final(state)); if (this_backward_cost + this_forward_cost > cutoff && this_backward_cost != std::numeric_limits<double>::infinity()) lat->SetFinal(state, Weight::Zero()); for (fst::MutableArcIterator<LatType> aiter(lat, state); !aiter.Done(); aiter.Next()) { Arc arc(aiter.Value()); StateId nextstate = arc.nextstate; KALDI_ASSERT(nextstate > state && nextstate < num_states); double arc_cost = ConvertToCost(arc.weight), arc_backward_cost = arc_cost + backward_cost[nextstate], this_fb_cost = this_forward_cost + arc_backward_cost; if (arc_backward_cost < this_backward_cost) this_backward_cost = arc_backward_cost; if (this_fb_cost > cutoff) { // Prune the arc. arc.nextstate = bad_state; aiter.SetValue(arc); } } backward_cost[state] = this_backward_cost; } fst::Connect(lat); return (lat->NumStates() > 0); } // instantiate the template for lattice and CompactLattice. template bool PruneLattice(BaseFloat beam, Lattice *lat); template bool PruneLattice(BaseFloat beam, CompactLattice *lat); BaseFloat LatticeForwardBackward(const Lattice &lat, Posterior *post, double *acoustic_like_sum) { // Note, Posterior is defined as follows: Indexed [frame], then a list // of (transition-id, posterior-probability) pairs. // typedef std::vector<std::vector<std::pair<int32, BaseFloat> > > Posterior; using namespace fst; typedef Lattice::Arc Arc; typedef Arc::Weight Weight; typedef Arc::StateId StateId; if (acoustic_like_sum) *acoustic_like_sum = 0.0; // Make sure the lattice is topologically sorted. if (lat.Properties(fst::kTopSorted, true) == 0) KALDI_ERR << "Input lattice must be topologically sorted."; KALDI_ASSERT(lat.Start() == 0); int32 num_states = lat.NumStates(); vector<int32> state_times; int32 max_time = LatticeStateTimes(lat, &state_times); std::vector<double> alpha(num_states, kLogZeroDouble); std::vector<double> &beta(alpha); // we re-use the same memory for // this, but it's semantically distinct so we name it differently. double tot_forward_prob = kLogZeroDouble; post->clear(); post->resize(max_time); alpha[0] = 0.0; // Propagate alphas forward. for (StateId s = 0; s < num_states; s++) { double this_alpha = alpha[s]; for (ArcIterator<Lattice> aiter(lat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); double arc_like = -ConvertToCost(arc.weight); alpha[arc.nextstate] = LogAdd(alpha[arc.nextstate], this_alpha + arc_like); } Weight f = lat.Final(s); if (f != Weight::Zero()) { double final_like = this_alpha - (f.Value1() + f.Value2()); tot_forward_prob = LogAdd(tot_forward_prob, final_like); KALDI_ASSERT(state_times[s] == max_time && "Lattice is inconsistent (final-prob not at max_time)"); } } for (StateId s = num_states-1; s >= 0; s--) { Weight f = lat.Final(s); double this_beta = -(f.Value1() + f.Value2()); for (ArcIterator<Lattice> aiter(lat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); double arc_like = -ConvertToCost(arc.weight), arc_beta = beta[arc.nextstate] + arc_like; this_beta = LogAdd(this_beta, arc_beta); int32 transition_id = arc.ilabel; // The following "if" is an optimization to avoid un-needed exp(). if (transition_id != 0 || acoustic_like_sum != NULL) { double posterior = Exp(alpha[s] + arc_beta - tot_forward_prob); if (transition_id != 0) // Arc has a transition-id on it [not epsilon] (*post)[state_times[s]].push_back(std::make_pair(transition_id, static_cast<kaldi::BaseFloat>(posterior))); if (acoustic_like_sum != NULL) *acoustic_like_sum -= posterior * arc.weight.Value2(); } } if (acoustic_like_sum != NULL && f != Weight::Zero()) { double final_logprob = - ConvertToCost(f), posterior = Exp(alpha[s] + final_logprob - tot_forward_prob); *acoustic_like_sum -= posterior * f.Value2(); } beta[s] = this_beta; } double tot_backward_prob = beta[0]; if (!ApproxEqual(tot_forward_prob, tot_backward_prob, 1e-8)) { KALDI_WARN << "Total forward probability over lattice = " << tot_forward_prob << ", while total backward probability = " << tot_backward_prob; } // Now combine any posteriors with the same transition-id. for (int32 t = 0; t < max_time; t++) MergePairVectorSumming(&((*post)[t])); return tot_backward_prob; } void LatticeActivePhones(const Lattice &lat, const TransitionModel &trans, const vector<int32> &silence_phones, vector< std::set<int32> > *active_phones) { KALDI_ASSERT(IsSortedAndUniq(silence_phones)); vector<int32> state_times; int32 num_states = lat.NumStates(); int32 max_time = LatticeStateTimes(lat, &state_times); active_phones->clear(); active_phones->resize(max_time); for (int32 state = 0; state < num_states; state++) { int32 cur_time = state_times[state]; for (fst::ArcIterator<Lattice> aiter(lat, state); !aiter.Done(); aiter.Next()) { const LatticeArc &arc = aiter.Value(); if (arc.ilabel != 0) { // Non-epsilon arc int32 phone = trans.TransitionIdToPhone(arc.ilabel); if (!std::binary_search(silence_phones.begin(), silence_phones.end(), phone)) (*active_phones)[cur_time].insert(phone); } } // end looping over arcs } // end looping over states } void ConvertLatticeToPhones(const TransitionModel &trans, Lattice *lat) { typedef LatticeArc Arc; int32 num_states = lat->NumStates(); for (int32 state = 0; state < num_states; state++) { for (fst::MutableArcIterator<Lattice> aiter(lat, state); !aiter.Done(); aiter.Next()) { Arc arc(aiter.Value()); arc.olabel = 0; // remove any word. if ((arc.ilabel != 0) // has a transition-id on input.. && (trans.TransitionIdToHmmState(arc.ilabel) == 0) && (!trans.IsSelfLoop(arc.ilabel))) { // && trans.IsFinal(arc.ilabel)) // there is one of these per phone... arc.olabel = trans.TransitionIdToPhone(arc.ilabel); } aiter.SetValue(arc); } // end looping over arcs } // end looping over states } static inline double LogAddOrMax(bool viterbi, double a, double b) { if (viterbi) return std::max(a, b); else return LogAdd(a, b); } template<typename LatticeType> double ComputeLatticeAlphasAndBetas(const LatticeType &lat, bool viterbi, vector<double> *alpha, vector<double> *beta) { typedef typename LatticeType::Arc Arc; typedef typename Arc::Weight Weight; typedef typename Arc::StateId StateId; StateId num_states = lat.NumStates(); KALDI_ASSERT(lat.Properties(fst::kTopSorted, true) == fst::kTopSorted); KALDI_ASSERT(lat.Start() == 0); alpha->clear(); beta->clear(); alpha->resize(num_states, kLogZeroDouble); beta->resize(num_states, kLogZeroDouble); double tot_forward_prob = kLogZeroDouble; (*alpha)[0] = 0.0; // Propagate alphas forward. for (StateId s = 0; s < num_states; s++) { double this_alpha = (*alpha)[s]; for (fst::ArcIterator<LatticeType> aiter(lat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); double arc_like = -ConvertToCost(arc.weight); (*alpha)[arc.nextstate] = LogAddOrMax(viterbi, (*alpha)[arc.nextstate], this_alpha + arc_like); } Weight f = lat.Final(s); if (f != Weight::Zero()) { double final_like = this_alpha - ConvertToCost(f); tot_forward_prob = LogAddOrMax(viterbi, tot_forward_prob, final_like); } } for (StateId s = num_states-1; s >= 0; s--) { // it's guaranteed signed. double this_beta = -ConvertToCost(lat.Final(s)); for (fst::ArcIterator<LatticeType> aiter(lat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); double arc_like = -ConvertToCost(arc.weight), arc_beta = (*beta)[arc.nextstate] + arc_like; this_beta = LogAddOrMax(viterbi, this_beta, arc_beta); } (*beta)[s] = this_beta; } double tot_backward_prob = (*beta)[lat.Start()]; if (!ApproxEqual(tot_forward_prob, tot_backward_prob, 1e-8)) { KALDI_WARN << "Total forward probability over lattice = " << tot_forward_prob << ", while total backward probability = " << tot_backward_prob; } // Split the difference when returning... they should be the same. return 0.5 * (tot_backward_prob + tot_forward_prob); } // instantiate the template for Lattice and CompactLattice template double ComputeLatticeAlphasAndBetas(const Lattice &lat, bool viterbi, vector<double> *alpha, vector<double> *beta); template double ComputeLatticeAlphasAndBetas(const CompactLattice &lat, bool viterbi, vector<double> *alpha, vector<double> *beta); /// This is used in CompactLatticeLimitDepth. struct LatticeArcRecord { BaseFloat logprob; // logprob <= 0 is the best Viterbi logprob of this arc, // minus the overall best-cost of the lattice. CompactLatticeArc::StateId state; // state in the lattice. size_t arc; // arc index within the state. bool operator < (const LatticeArcRecord &other) const { return logprob < other.logprob; } }; void CompactLatticeLimitDepth(int32 max_depth_per_frame, CompactLattice *clat) { typedef CompactLatticeArc Arc; typedef Arc::Weight Weight; typedef Arc::StateId StateId; if (clat->Start() == fst::kNoStateId) { KALDI_WARN << "Limiting depth of empty lattice."; return; } if (clat->Properties(fst::kTopSorted, true) == 0) { if (!TopSort(clat)) KALDI_ERR << "Topological sorting of lattice failed."; } vector<int32> state_times; int32 T = CompactLatticeStateTimes(*clat, &state_times); // The alpha and beta quantities here are "viterbi" alphas and beta. std::vector<double> alpha; std::vector<double> beta; bool viterbi = true; double best_prob = ComputeLatticeAlphasAndBetas(*clat, viterbi, &alpha, &beta); std::vector<std::vector<LatticeArcRecord> > arc_records(T); StateId num_states = clat->NumStates(); for (StateId s = 0; s < num_states; s++) { for (fst::ArcIterator<CompactLattice> aiter(*clat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); LatticeArcRecord arc_record; arc_record.state = s; arc_record.arc = aiter.Position(); arc_record.logprob = (alpha[s] + beta[arc.nextstate] - ConvertToCost(arc.weight)) - best_prob; KALDI_ASSERT(arc_record.logprob < 0.1); // Should be zero or negative. int32 num_frames = arc.weight.String().size(), start_t = state_times[s]; for (int32 t = start_t; t < start_t + num_frames; t++) { KALDI_ASSERT(t < T); arc_records[t].push_back(arc_record); } } } StateId dead_state = clat->AddState(); // A non-coaccesible state which we use // to remove arcs (make them end // there). size_t max_depth = max_depth_per_frame; for (int32 t = 0; t < T; t++) { size_t size = arc_records[t].size(); if (size > max_depth) { // we sort from worst to best, so we keep the later-numbered ones, // and delete the lower-numbered ones. size_t cutoff = size - max_depth; std::nth_element(arc_records[t].begin(), arc_records[t].begin() + cutoff, arc_records[t].end()); for (size_t index = 0; index < cutoff; index++) { LatticeArcRecord record(arc_records[t][index]); fst::MutableArcIterator<CompactLattice> aiter(clat, record.state); aiter.Seek(record.arc); Arc arc = aiter.Value(); if (arc.nextstate != dead_state) { // not already killed. arc.nextstate = dead_state; aiter.SetValue(arc); } } } } Connect(clat); TopSortCompactLatticeIfNeeded(clat); } void TopSortCompactLatticeIfNeeded(CompactLattice *clat) { if (clat->Properties(fst::kTopSorted, true) == 0) { if (fst::TopSort(clat) == false) { KALDI_ERR << "Topological sorting failed"; } } } void TopSortLatticeIfNeeded(Lattice *lat) { if (lat->Properties(fst::kTopSorted, true) == 0) { if (fst::TopSort(lat) == false) { KALDI_ERR << "Topological sorting failed"; } } } /// Returns the depth of the lattice, defined as the average number of /// arcs crossing any given frame. Returns 1 for empty lattices. /// Requires that input is topologically sorted. BaseFloat CompactLatticeDepth(const CompactLattice &clat, int32 *num_frames) { typedef CompactLattice::Arc::StateId StateId; if (clat.Properties(fst::kTopSorted, true) == 0) { KALDI_ERR << "Lattice input to CompactLatticeDepth was not topologically " << "sorted."; } if (clat.Start() == fst::kNoStateId) { *num_frames = 0; return 1.0; } size_t num_arc_frames = 0; int32 t; { vector<int32> state_times; t = CompactLatticeStateTimes(clat, &state_times); } if (num_frames != NULL) *num_frames = t; for (StateId s = 0; s < clat.NumStates(); s++) { for (fst::ArcIterator<CompactLattice> aiter(clat, s); !aiter.Done(); aiter.Next()) { const CompactLatticeArc &arc = aiter.Value(); num_arc_frames += arc.weight.String().size(); } num_arc_frames += clat.Final(s).String().size(); } return num_arc_frames / static_cast<BaseFloat>(t); } void CompactLatticeDepthPerFrame(const CompactLattice &clat, std::vector<int32> *depth_per_frame) { typedef CompactLattice::Arc::StateId StateId; if (clat.Properties(fst::kTopSorted, true) == 0) { KALDI_ERR << "Lattice input to CompactLatticeDepthPerFrame was not " << "topologically sorted."; } if (clat.Start() == fst::kNoStateId) { depth_per_frame->clear(); return; } vector<int32> state_times; int32 T = CompactLatticeStateTimes(clat, &state_times); depth_per_frame->clear(); if (T <= 0) { return; } else { depth_per_frame->resize(T, 0); for (StateId s = 0; s < clat.NumStates(); s++) { int32 start_time = state_times[s]; for (fst::ArcIterator<CompactLattice> aiter(clat, s); !aiter.Done(); aiter.Next()) { const CompactLatticeArc &arc = aiter.Value(); int32 len = arc.weight.String().size(); for (int32 t = start_time; t < start_time + len; t++) { KALDI_ASSERT(t < T); (*depth_per_frame)[t]++; } } int32 final_len = clat.Final(s).String().size(); for (int32 t = start_time; t < start_time + final_len; t++) { KALDI_ASSERT(t < T); (*depth_per_frame)[t]++; } } } } void ConvertCompactLatticeToPhones(const TransitionModel &trans, CompactLattice *clat) { typedef CompactLatticeArc Arc; typedef Arc::Weight Weight; int32 num_states = clat->NumStates(); for (int32 state = 0; state < num_states; state++) { for (fst::MutableArcIterator<CompactLattice> aiter(clat, state); !aiter.Done(); aiter.Next()) { Arc arc(aiter.Value()); std::vector<int32> phone_seq; const std::vector<int32> &tid_seq = arc.weight.String(); for (std::vector<int32>::const_iterator iter = tid_seq.begin(); iter != tid_seq.end(); ++iter) { if (trans.IsFinal(*iter))// note: there is one of these per phone... phone_seq.push_back(trans.TransitionIdToPhone(*iter)); } arc.weight.SetString(phone_seq); aiter.SetValue(arc); } // end looping over arcs Weight f = clat->Final(state); if (f != Weight::Zero()) { std::vector<int32> phone_seq; const std::vector<int32> &tid_seq = f.String(); for (std::vector<int32>::const_iterator iter = tid_seq.begin(); iter != tid_seq.end(); ++iter) { if (trans.IsFinal(*iter))// note: there is one of these per phone... phone_seq.push_back(trans.TransitionIdToPhone(*iter)); } f.SetString(phone_seq); clat->SetFinal(state, f); } } // end looping over states } bool LatticeBoost(const TransitionModel &trans, const std::vector<int32> &alignment, const std::vector<int32> &silence_phones, BaseFloat b, BaseFloat max_silence_error, Lattice *lat) { TopSortLatticeIfNeeded(lat); // get all stored properties (test==false means don't test if not known). uint64 props = lat->Properties(fst::kFstProperties, false); KALDI_ASSERT(IsSortedAndUniq(silence_phones)); KALDI_ASSERT(max_silence_error >= 0.0 && max_silence_error <= 1.0); vector<int32> state_times; int32 num_states = lat->NumStates(); int32 num_frames = LatticeStateTimes(*lat, &state_times); KALDI_ASSERT(num_frames == static_cast<int32>(alignment.size())); for (int32 state = 0; state < num_states; state++) { int32 cur_time = state_times[state]; for (fst::MutableArcIterator<Lattice> aiter(lat, state); !aiter.Done(); aiter.Next()) { LatticeArc arc = aiter.Value(); if (arc.ilabel != 0) { // Non-epsilon arc if (arc.ilabel < 0 || arc.ilabel > trans.NumTransitionIds()) { KALDI_WARN << "Lattice has out-of-range transition-ids: " << "lattice/model mismatch?"; return false; } int32 phone = trans.TransitionIdToPhone(arc.ilabel), ref_phone = trans.TransitionIdToPhone(alignment[cur_time]); BaseFloat frame_error; if (phone == ref_phone) { frame_error = 0.0; } else { // an error... if (std::binary_search(silence_phones.begin(), silence_phones.end(), phone)) frame_error = max_silence_error; else frame_error = 1.0; } BaseFloat delta_cost = -b * frame_error; // negative cost if // frame is wrong, to boost likelihood of arcs with errors on them. // Add this cost to the graph part. arc.weight.SetValue1(arc.weight.Value1() + delta_cost); aiter.SetValue(arc); } } } // All we changed is the weights, so any properties that were // known before, are still known, except for whether or not the // lattice was weighted. lat->SetProperties(props, ~(fst::kWeighted|fst::kUnweighted)); return true; } BaseFloat LatticeForwardBackwardMpeVariants( const TransitionModel &trans, const std::vector<int32> &silence_phones, const Lattice &lat, const std::vector<int32> &num_ali, std::string criterion, bool one_silence_class, Posterior *post) { using namespace fst; typedef Lattice::Arc Arc; typedef Arc::Weight Weight; typedef Arc::StateId StateId; KALDI_ASSERT(criterion == "mpfe" || criterion == "smbr"); bool is_mpfe = (criterion == "mpfe"); if (lat.Properties(fst::kTopSorted, true) == 0) KALDI_ERR << "Input lattice must be topologically sorted."; KALDI_ASSERT(lat.Start() == 0); int32 num_states = lat.NumStates(); vector<int32> state_times; int32 max_time = LatticeStateTimes(lat, &state_times); KALDI_ASSERT(max_time == static_cast<int32>(num_ali.size())); std::vector<double> alpha(num_states, kLogZeroDouble), alpha_smbr(num_states, 0), //forward variable for sMBR beta(num_states, kLogZeroDouble), beta_smbr(num_states, 0); //backward variable for sMBR double tot_forward_prob = kLogZeroDouble; double tot_forward_score = 0; post->clear(); post->resize(max_time); alpha[0] = 0.0; // First Pass Forward, for (StateId s = 0; s < num_states; s++) { double this_alpha = alpha[s]; for (ArcIterator<Lattice> aiter(lat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); double arc_like = -ConvertToCost(arc.weight); alpha[arc.nextstate] = LogAdd(alpha[arc.nextstate], this_alpha + arc_like); } Weight f = lat.Final(s); if (f != Weight::Zero()) { double final_like = this_alpha - (f.Value1() + f.Value2()); tot_forward_prob = LogAdd(tot_forward_prob, final_like); KALDI_ASSERT(state_times[s] == max_time && "Lattice is inconsistent (final-prob not at max_time)"); } } // First Pass Backward, for (StateId s = num_states-1; s >= 0; s--) { Weight f = lat.Final(s); double this_beta = -(f.Value1() + f.Value2()); for (ArcIterator<Lattice> aiter(lat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); double arc_like = -ConvertToCost(arc.weight), arc_beta = beta[arc.nextstate] + arc_like; this_beta = LogAdd(this_beta, arc_beta); } beta[s] = this_beta; } // First Pass Forward-Backward Check double tot_backward_prob = beta[0]; // may loose the condition somehow here 1e-6 (was 1e-8) if (!ApproxEqual(tot_forward_prob, tot_backward_prob, 1e-6)) { KALDI_ERR << "Total forward probability over lattice = " << tot_forward_prob << ", while total backward probability = " << tot_backward_prob; } alpha_smbr[0] = 0.0; // Second Pass Forward, calculate forward for MPFE/SMBR for (StateId s = 0; s < num_states; s++) { double this_alpha = alpha[s]; for (ArcIterator<Lattice> aiter(lat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); double arc_like = -ConvertToCost(arc.weight); double frame_acc = 0.0; if (arc.ilabel != 0) { int32 cur_time = state_times[s]; int32 phone = trans.TransitionIdToPhone(arc.ilabel), ref_phone = trans.TransitionIdToPhone(num_ali[cur_time]); bool phone_is_sil = std::binary_search(silence_phones.begin(), silence_phones.end(), phone), ref_phone_is_sil = std::binary_search(silence_phones.begin(), silence_phones.end(), ref_phone), both_sil = phone_is_sil && ref_phone_is_sil; if (!is_mpfe) { // smbr. int32 pdf = trans.TransitionIdToPdf(arc.ilabel), ref_pdf = trans.TransitionIdToPdf(num_ali[cur_time]); if (!one_silence_class) // old behavior frame_acc = (pdf == ref_pdf && !phone_is_sil) ? 1.0 : 0.0; else frame_acc = (pdf == ref_pdf || both_sil) ? 1.0 : 0.0; } else { if (!one_silence_class) // old behavior frame_acc = (phone == ref_phone && !phone_is_sil) ? 1.0 : 0.0; else frame_acc = (phone == ref_phone || both_sil) ? 1.0 : 0.0; } } double arc_scale = Exp(alpha[s] + arc_like - alpha[arc.nextstate]); alpha_smbr[arc.nextstate] += arc_scale * (alpha_smbr[s] + frame_acc); } Weight f = lat.Final(s); if (f != Weight::Zero()) { double final_like = this_alpha - (f.Value1() + f.Value2()); double arc_scale = Exp(final_like - tot_forward_prob); tot_forward_score += arc_scale * alpha_smbr[s]; KALDI_ASSERT(state_times[s] == max_time && "Lattice is inconsistent (final-prob not at max_time)"); } } // Second Pass Backward, collect Mpe style posteriors for (StateId s = num_states-1; s >= 0; s--) { for (ArcIterator<Lattice> aiter(lat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); double arc_like = -ConvertToCost(arc.weight), arc_beta = beta[arc.nextstate] + arc_like; double frame_acc = 0.0; int32 transition_id = arc.ilabel; if (arc.ilabel != 0) { int32 cur_time = state_times[s]; int32 phone = trans.TransitionIdToPhone(arc.ilabel), ref_phone = trans.TransitionIdToPhone(num_ali[cur_time]); bool phone_is_sil = std::binary_search(silence_phones.begin(), silence_phones.end(), phone), ref_phone_is_sil = std::binary_search(silence_phones.begin(), silence_phones.end(), ref_phone), both_sil = phone_is_sil && ref_phone_is_sil; if (!is_mpfe) { // smbr. int32 pdf = trans.TransitionIdToPdf(arc.ilabel), ref_pdf = trans.TransitionIdToPdf(num_ali[cur_time]); if (!one_silence_class) // old behavior frame_acc = (pdf == ref_pdf && !phone_is_sil) ? 1.0 : 0.0; else frame_acc = (pdf == ref_pdf || both_sil) ? 1.0 : 0.0; } else { if (!one_silence_class) // old behavior frame_acc = (phone == ref_phone && !phone_is_sil) ? 1.0 : 0.0; else frame_acc = (phone == ref_phone || both_sil) ? 1.0 : 0.0; } } double arc_scale = Exp(beta[arc.nextstate] + arc_like - beta[s]); // check arc_scale NAN, // this is to prevent partial paths in Lattices // i.e., paths don't survive to the final state if (KALDI_ISNAN(arc_scale)) arc_scale = 0; beta_smbr[s] += arc_scale * (beta_smbr[arc.nextstate] + frame_acc); if (transition_id != 0) { // Arc has a transition-id on it [not epsilon] double posterior = Exp(alpha[s] + arc_beta - tot_forward_prob); double acc_diff = alpha_smbr[s] + frame_acc + beta_smbr[arc.nextstate] - tot_forward_score; double posterior_smbr = posterior * acc_diff; (*post)[state_times[s]].push_back(std::make_pair(transition_id, static_cast<BaseFloat>(posterior_smbr))); } } } //Second Pass Forward Backward check double tot_backward_score = beta_smbr[0]; // Initial state id == 0 // may loose the condition somehow here 1e-5/1e-4 if (!ApproxEqual(tot_forward_score, tot_backward_score, 1e-4)) { KALDI_ERR << "Total forward score over lattice = " << tot_forward_score << ", while total backward score = " << tot_backward_score; } // Output the computed posteriors for (int32 t = 0; t < max_time; t++) MergePairVectorSumming(&((*post)[t])); return tot_forward_score; } bool CompactLatticeToWordAlignment(const CompactLattice &clat, std::vector<int32> *words, std::vector<int32> *begin_times, std::vector<int32> *lengths) { words->clear(); begin_times->clear(); lengths->clear(); typedef CompactLattice::Arc Arc; typedef Arc::Label Label; typedef CompactLattice::StateId StateId; typedef CompactLattice::Weight Weight; using namespace fst; StateId state = clat.Start(); int32 cur_time = 0; if (state == kNoStateId) { KALDI_WARN << "Empty lattice."; return false; } while (1) { Weight final = clat.Final(state); size_t num_arcs = clat.NumArcs(state); if (final != Weight::Zero()) { if (num_arcs != 0) { KALDI_WARN << "Lattice is not linear."; return false; } if (! final.String().empty()) { KALDI_WARN << "Lattice has alignments on final-weight: probably " "was not word-aligned (alignments will be approximate)"; } return true; } else { if (num_arcs != 1) { KALDI_WARN << "Lattice is not linear: num-arcs = " << num_arcs; return false; } fst::ArcIterator<CompactLattice> aiter(clat, state); const Arc &arc = aiter.Value(); Label word_id = arc.ilabel; // Note: ilabel==olabel, since acceptor. // Also note: word_id may be zero; we output it anyway. int32 length = arc.weight.String().size(); words->push_back(word_id); begin_times->push_back(cur_time); lengths->push_back(length); cur_time += length; state = arc.nextstate; } } } bool CompactLatticeToWordProns( const TransitionModel &tmodel, const CompactLattice &clat, std::vector<int32> *words, std::vector<int32> *begin_times, std::vector<int32> *lengths, std::vector<std::vector<int32> > *prons, std::vector<std::vector<int32> > *phone_lengths) { words->clear(); begin_times->clear(); lengths->clear(); prons->clear(); phone_lengths->clear(); typedef CompactLattice::Arc Arc; typedef Arc::Label Label; typedef CompactLattice::StateId StateId; typedef CompactLattice::Weight Weight; using namespace fst; StateId state = clat.Start(); int32 cur_time = 0; if (state == kNoStateId) { KALDI_WARN << "Empty lattice."; return false; } while (1) { Weight final = clat.Final(state); size_t num_arcs = clat.NumArcs(state); if (final != Weight::Zero()) { if (num_arcs != 0) { KALDI_WARN << "Lattice is not linear."; return false; } if (! final.String().empty()) { KALDI_WARN << "Lattice has alignments on final-weight: probably " "was not word-aligned (alignments will be approximate)"; } return true; } else { if (num_arcs != 1) { KALDI_WARN << "Lattice is not linear: num-arcs = " << num_arcs; return false; } fst::ArcIterator<CompactLattice> aiter(clat, state); const Arc &arc = aiter.Value(); Label word_id = arc.ilabel; // Note: ilabel==olabel, since acceptor. // Also note: word_id may be zero; we output it anyway. int32 length = arc.weight.String().size(); words->push_back(word_id); begin_times->push_back(cur_time); lengths->push_back(length); const std::vector<int32> &arc_alignment = arc.weight.String(); std::vector<std::vector<int32> > split_alignment; SplitToPhones(tmodel, arc_alignment, &split_alignment); std::vector<int32> phones(split_alignment.size()); std::vector<int32> plengths(split_alignment.size()); for (size_t i = 0; i < split_alignment.size(); i++) { KALDI_ASSERT(!split_alignment[i].empty()); phones[i] = tmodel.TransitionIdToPhone(split_alignment[i][0]); plengths[i] = split_alignment[i].size(); } prons->push_back(phones); phone_lengths->push_back(plengths); cur_time += length; state = arc.nextstate; } } } void CompactLatticeShortestPath(const CompactLattice &clat, CompactLattice *shortest_path) { using namespace fst; if (clat.Properties(fst::kTopSorted, true) == 0) { CompactLattice clat_copy(clat); if (!TopSort(&clat_copy)) KALDI_ERR << "Was not able to topologically sort lattice (cycles found?)"; CompactLatticeShortestPath(clat_copy, shortest_path); return; } // Now we can assume it's topologically sorted. shortest_path->DeleteStates(); if (clat.Start() == kNoStateId) return; KALDI_ASSERT(clat.Start() == 0); // since top-sorted. typedef CompactLatticeArc Arc; typedef Arc::StateId StateId; typedef CompactLatticeWeight Weight; vector<std::pair<double, StateId> > best_cost_and_pred(clat.NumStates() + 1); StateId superfinal = clat.NumStates(); for (StateId s = 0; s <= clat.NumStates(); s++) { best_cost_and_pred[s].first = numeric_limits<double>::infinity(); best_cost_and_pred[s].second = fst::kNoStateId; } best_cost_and_pred[0].first = 0; for (StateId s = 0; s < clat.NumStates(); s++) { double my_cost = best_cost_and_pred[s].first; for (ArcIterator<CompactLattice> aiter(clat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); double arc_cost = ConvertToCost(arc.weight), next_cost = my_cost + arc_cost; if (next_cost < best_cost_and_pred[arc.nextstate].first) { best_cost_and_pred[arc.nextstate].first = next_cost; best_cost_and_pred[arc.nextstate].second = s; } } double final_cost = ConvertToCost(clat.Final(s)), tot_final = my_cost + final_cost; if (tot_final < best_cost_and_pred[superfinal].first) { best_cost_and_pred[superfinal].first = tot_final; best_cost_and_pred[superfinal].second = s; } } std::vector<StateId> states; // states on best path. StateId cur_state = superfinal; while (cur_state != 0) { StateId prev_state = best_cost_and_pred[cur_state].second; if (prev_state == kNoStateId) { KALDI_WARN << "Failure in best-path algorithm for lattice (infinite costs?)"; return; // return empty best-path. } states.push_back(prev_state); KALDI_ASSERT(cur_state != prev_state && "Lattice with cycles"); cur_state = prev_state; } std::reverse(states.begin(), states.end()); for (size_t i = 0; i < states.size(); i++) shortest_path->AddState(); for (StateId s = 0; static_cast<size_t>(s) < states.size(); s++) { if (s == 0) shortest_path->SetStart(s); if (static_cast<size_t>(s + 1) < states.size()) { // transition to next state. bool have_arc = false; Arc cur_arc; for (ArcIterator<CompactLattice> aiter(clat, states[s]); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); if (arc.nextstate == states[s+1]) { if (!have_arc || ConvertToCost(arc.weight) < ConvertToCost(cur_arc.weight)) { cur_arc = arc; have_arc = true; } } } KALDI_ASSERT(have_arc && "Code error."); shortest_path->AddArc(s, Arc(cur_arc.ilabel, cur_arc.olabel, cur_arc.weight, s+1)); } else { // final-prob. shortest_path->SetFinal(s, clat.Final(states[s])); } } } void AddWordInsPenToCompactLattice(BaseFloat word_ins_penalty, CompactLattice *clat) { typedef CompactLatticeArc Arc; int32 num_states = clat->NumStates(); //scan the lattice for (int32 state = 0; state < num_states; state++) { for (fst::MutableArcIterator<CompactLattice> aiter(clat, state); !aiter.Done(); aiter.Next()) { Arc arc(aiter.Value()); if (arc.ilabel != 0) { // if there is a word on this arc LatticeWeight weight = arc.weight.Weight(); // add word insertion penalty to lattice weight.SetValue1( weight.Value1() + word_ins_penalty); arc.weight.SetWeight(weight); aiter.SetValue(arc); } } // end looping over arcs } // end looping over states } struct ClatRescoreTuple { ClatRescoreTuple(int32 state, int32 arc, int32 tid): state_id(state), arc_id(arc), tid(tid) { } int32 state_id; int32 arc_id; int32 tid; }; /** RescoreCompactLatticeInternal is the internal code for both RescoreCompactLattice and RescoreCompatLatticeSpeedup. For RescoreCompactLattice, "tmodel" will be NULL and speedup_factor will be 1.0. */ bool RescoreCompactLatticeInternal( const TransitionModel *tmodel, BaseFloat speedup_factor, DecodableInterface *decodable, CompactLattice *clat) { KALDI_ASSERT(speedup_factor >= 1.0); if (clat->NumStates() == 0) { KALDI_WARN << "Rescoring empty lattice"; return false; } if (!clat->Properties(fst::kTopSorted, true)) { if (fst::TopSort(clat) == false) { KALDI_WARN << "Cycles detected in lattice."; return false; } } std::vector<int32> state_times; int32 utt_len = kaldi::CompactLatticeStateTimes(*clat, &state_times); std::vector<std::vector<ClatRescoreTuple> > time_to_state(utt_len); int32 num_states = clat->NumStates(); KALDI_ASSERT(num_states == state_times.size()); for (size_t state = 0; state < num_states; state++) { KALDI_ASSERT(state_times[state] >= 0); int32 t = state_times[state]; int32 arc_id = 0; for (fst::MutableArcIterator<CompactLattice> aiter(clat, state); !aiter.Done(); aiter.Next(), arc_id++) { CompactLatticeArc arc = aiter.Value(); std::vector<int32> arc_string = arc.weight.String(); for (size_t offset = 0; offset < arc_string.size(); offset++) { if (t < utt_len) { // end state may be past this.. int32 tid = arc_string[offset]; time_to_state[t+offset].push_back(ClatRescoreTuple(state, arc_id, tid)); } else { if (t != utt_len) { KALDI_WARN << "There appears to be lattice/feature mismatch, " << "aborting."; return false; } } } } if (clat->Final(state) != CompactLatticeWeight::Zero()) { arc_id = -1; std::vector<int32> arc_string = clat->Final(state).String(); for (size_t offset = 0; offset < arc_string.size(); offset++) { KALDI_ASSERT(t + offset < utt_len); // already checked in // CompactLatticeStateTimes, so would be code error. time_to_state[t+offset].push_back( ClatRescoreTuple(state, arc_id, arc_string[offset])); } } } for (int32 t = 0; t < utt_len; t++) { if ((t < utt_len - 1) && decodable->IsLastFrame(t)) { KALDI_WARN << "Features are too short for lattice: utt-len is " << utt_len << ", " << t << " is last frame"; return false; } // frame_scale is the scale we put on the computed acoustic probs for this // frame. It will always be 1.0 if tmodel == NULL (i.e. if we are not doing // the "speedup" code). For frames with multiple pdf-ids it will be one. // For frames with only one pdf-id, it will equal speedup_factor (>=1.0) // with probability 1.0 / speedup_factor, and zero otherwise. If it is zero, // we can avoid computing the probabilities. BaseFloat frame_scale = 1.0; KALDI_ASSERT(!time_to_state[t].empty()); if (tmodel != NULL) { int32 pdf_id = tmodel->TransitionIdToPdf(time_to_state[t][0].tid); bool frame_has_multiple_pdfs = false; for (size_t i = 1; i < time_to_state[t].size(); i++) { if (tmodel->TransitionIdToPdf(time_to_state[t][i].tid) != pdf_id) { frame_has_multiple_pdfs = true; break; } } if (frame_has_multiple_pdfs) { frame_scale = 1.0; } else { if (WithProb(1.0 / speedup_factor)) { frame_scale = speedup_factor; } else { frame_scale = 0.0; } } if (frame_scale == 0.0) continue; // the code below would be pointless. } for (size_t i = 0; i < time_to_state[t].size(); i++) { int32 state = time_to_state[t][i].state_id; int32 arc_id = time_to_state[t][i].arc_id; int32 tid = time_to_state[t][i].tid; if (arc_id == -1) { // Final state // Access the trans_id CompactLatticeWeight curr_clat_weight = clat->Final(state); // Calculate likelihood BaseFloat log_like = decodable->LogLikelihood(t, tid) * frame_scale; // update weight CompactLatticeWeight new_clat_weight = curr_clat_weight; LatticeWeight new_lat_weight = new_clat_weight.Weight(); new_lat_weight.SetValue2(-log_like + curr_clat_weight.Weight().Value2()); new_clat_weight.SetWeight(new_lat_weight); clat->SetFinal(state, new_clat_weight); } else { fst::MutableArcIterator<CompactLattice> aiter(clat, state); aiter.Seek(arc_id); CompactLatticeArc arc = aiter.Value(); // Calculate likelihood BaseFloat log_like = decodable->LogLikelihood(t, tid) * frame_scale; // update weight LatticeWeight new_weight = arc.weight.Weight(); new_weight.SetValue2(-log_like + arc.weight.Weight().Value2()); arc.weight.SetWeight(new_weight); aiter.SetValue(arc); } } } return true; } bool RescoreCompactLatticeSpeedup( const TransitionModel &tmodel, BaseFloat speedup_factor, DecodableInterface *decodable, CompactLattice *clat) { return RescoreCompactLatticeInternal(&tmodel, speedup_factor, decodable, clat); } bool RescoreCompactLattice(DecodableInterface *decodable, CompactLattice *clat) { return RescoreCompactLatticeInternal(NULL, 1.0, decodable, clat); } bool RescoreLattice(DecodableInterface *decodable, Lattice *lat) { if (lat->NumStates() == 0) { KALDI_WARN << "Rescoring empty lattice"; return false; } if (!lat->Properties(fst::kTopSorted, true)) { if (fst::TopSort(lat) == false) { KALDI_WARN << "Cycles detected in lattice."; return false; } } std::vector<int32> state_times; int32 utt_len = kaldi::LatticeStateTimes(*lat, &state_times); std::vector<std::vector<int32> > time_to_state(utt_len ); int32 num_states = lat->NumStates(); KALDI_ASSERT(num_states == state_times.size()); for (size_t state = 0; state < num_states; state++) { int32 t = state_times[state]; // Don't check t >= 0 because non-accessible states could have t = -1. KALDI_ASSERT(t <= utt_len); if (t >= 0 && t < utt_len) time_to_state[t].push_back(state); } for (int32 t = 0; t < utt_len; t++) { if ((t < utt_len - 1) && decodable->IsLastFrame(t)) { KALDI_WARN << "Features are too short for lattice: utt-len is " << utt_len << ", " << t << " is last frame"; return false; } for (size_t i = 0; i < time_to_state[t].size(); i++) { int32 state = time_to_state[t][i]; for (fst::MutableArcIterator<Lattice> aiter(lat, state); !aiter.Done(); aiter.Next()) { LatticeArc arc = aiter.Value(); if (arc.ilabel != 0) { int32 trans_id = arc.ilabel; // Note: it doesn't necessarily // have to be a transition-id, just whatever the Decodable // object is expecting, but it's normally a transition-id. BaseFloat log_like = decodable->LogLikelihood(t, trans_id); arc.weight.SetValue2(-log_like + arc.weight.Value2()); aiter.SetValue(arc); } } } } return true; } BaseFloat LatticeForwardBackwardMmi( const TransitionModel &tmodel, const Lattice &lat, const std::vector<int32> &num_ali, bool drop_frames, bool convert_to_pdf_ids, bool cancel, Posterior *post) { // First compute the MMI posteriors. Posterior den_post; BaseFloat ans = LatticeForwardBackward(lat, &den_post, NULL); Posterior num_post; AlignmentToPosterior(num_ali, &num_post); // Now negate the MMI posteriors and add the numerator // posteriors. ScalePosterior(-1.0, &den_post); if (convert_to_pdf_ids) { Posterior num_tmp; ConvertPosteriorToPdfs(tmodel, num_post, &num_tmp); num_tmp.swap(num_post); Posterior den_tmp; ConvertPosteriorToPdfs(tmodel, den_post, &den_tmp); den_tmp.swap(den_post); } MergePosteriors(num_post, den_post, cancel, drop_frames, post); return ans; } int32 LongestSentenceLength(const Lattice &lat) { typedef Lattice::Arc Arc; typedef Arc::Label Label; typedef Arc::StateId StateId; if (lat.Properties(fst::kTopSorted, true) == 0) { Lattice lat_copy(lat); if (!TopSort(&lat_copy)) KALDI_ERR << "Was not able to topologically sort lattice (cycles found?)"; return LongestSentenceLength(lat_copy); } std::vector<int32> max_length(lat.NumStates(), 0); int32 lattice_max_length = 0; for (StateId s = 0; s < lat.NumStates(); s++) { int32 this_max_length = max_length[s]; for (fst::ArcIterator<Lattice> aiter(lat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); bool arc_has_word = (arc.olabel != 0); StateId nextstate = arc.nextstate; KALDI_ASSERT(static_cast<size_t>(nextstate) < max_length.size()); if (arc_has_word) { // A lattice should ideally not have cycles anyway; a cycle with a word // on is something very bad. KALDI_ASSERT(nextstate > s && "Lattice has cycles with words on."); max_length[nextstate] = std::max(max_length[nextstate], this_max_length + 1); } else { max_length[nextstate] = std::max(max_length[nextstate], this_max_length); } } if (lat.Final(s) != LatticeWeight::Zero()) lattice_max_length = std::max(lattice_max_length, max_length[s]); } return lattice_max_length; } int32 LongestSentenceLength(const CompactLattice &clat) { typedef CompactLattice::Arc Arc; typedef Arc::Label Label; typedef Arc::StateId StateId; if (clat.Properties(fst::kTopSorted, true) == 0) { CompactLattice clat_copy(clat); if (!TopSort(&clat_copy)) KALDI_ERR << "Was not able to topologically sort lattice (cycles found?)"; return LongestSentenceLength(clat_copy); } std::vector<int32> max_length(clat.NumStates(), 0); int32 lattice_max_length = 0; for (StateId s = 0; s < clat.NumStates(); s++) { int32 this_max_length = max_length[s]; for (fst::ArcIterator<CompactLattice> aiter(clat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); bool arc_has_word = (arc.ilabel != 0); // note: olabel == ilabel. // also note: for normal CompactLattice, e.g. as produced by // determinization, all arcs will have nonzero labels, but the user might // decide to remplace some of the labels with zero for some reason, and we // want to support this. StateId nextstate = arc.nextstate; KALDI_ASSERT(static_cast<size_t>(nextstate) < max_length.size()); KALDI_ASSERT(nextstate > s && "CompactLattice has cycles"); if (arc_has_word) max_length[nextstate] = std::max(max_length[nextstate], this_max_length + 1); else max_length[nextstate] = std::max(max_length[nextstate], this_max_length); } if (clat.Final(s) != CompactLatticeWeight::Zero()) lattice_max_length = std::max(lattice_max_length, max_length[s]); } return lattice_max_length; } void ComposeCompactLatticeDeterministic( const CompactLattice& clat, fst::DeterministicOnDemandFst<fst::StdArc>* det_fst, CompactLattice* composed_clat) { // StdFst::Arc and CompactLatticeArc has the same StateId type. typedef fst::StdArc::StateId StateId; typedef fst::StdArc::Weight Weight1; typedef CompactLatticeArc::Weight Weight2; typedef std::pair<StateId, StateId> StatePair; typedef unordered_map<StatePair, StateId, PairHasher<StateId> > MapType; typedef MapType::iterator IterType; // Empties the output FST. KALDI_ASSERT(composed_clat != NULL); composed_clat->DeleteStates(); MapType state_map; std::queue<StatePair> state_queue; // Sets start state in <composed_clat>. StateId start_state = composed_clat->AddState(); StatePair start_pair(clat.Start(), det_fst->Start()); composed_clat->SetStart(start_state); state_queue.push(start_pair); std::pair<IterType, bool> result = state_map.insert(std::make_pair(start_pair, start_state)); KALDI_ASSERT(result.second == true); // Starts composition here. while (!state_queue.empty()) { // Gets the first state in the queue. StatePair s = state_queue.front(); StateId s1 = s.first; StateId s2 = s.second; state_queue.pop(); Weight2 clat_final = clat.Final(s1); if (clat_final.Weight().Value1() != std::numeric_limits<BaseFloat>::infinity()) { // Test for whether the final-prob of state s1 was zero. Weight1 det_fst_final = det_fst->Final(s2); if (det_fst_final.Value() != std::numeric_limits<BaseFloat>::infinity()) { // Test for whether the final-prob of state s2 was zero. If neither // source-state final prob was zero, then we should create final state // in fst_composed. We compute the product manually since this is more // efficient. Weight2 final_weight(LatticeWeight(clat_final.Weight().Value1() + det_fst_final.Value(), clat_final.Weight().Value2()), clat_final.String()); // we can assume final_weight is not Zero(), since neither of // the sources was zero. KALDI_ASSERT(state_map.find(s) != state_map.end()); composed_clat->SetFinal(state_map[s], final_weight); } } // Loops over pair of edges at s1 and s2. for (fst::ArcIterator<CompactLattice> aiter(clat, s1); !aiter.Done(); aiter.Next()) { const CompactLatticeArc& arc1 = aiter.Value(); fst::StdArc arc2; StateId next_state1 = arc1.nextstate, next_state2; bool matched = false; if (arc1.olabel == 0) { // If the symbol on <arc1> is <epsilon>, we transit to the next state // for <clat>, but keep <det_fst> at the current state. matched = true; next_state2 = s2; } else { // Otherwise try to find the matched arc in <det_fst>. matched = det_fst->GetArc(s2, arc1.olabel, &arc2); if (matched) { next_state2 = arc2.nextstate; } } // If matched arc is found in <det_fst>, then we have to add new arcs to // <composed_clat>. if (matched) { StatePair next_state_pair(next_state1, next_state2); IterType siter = state_map.find(next_state_pair); StateId next_state; // Adds composed state to <state_map>. if (siter == state_map.end()) { // If the composed state has not been created yet, create it. next_state = composed_clat->AddState(); std::pair<const StatePair, StateId> next_state_map(next_state_pair, next_state); std::pair<IterType, bool> result = state_map.insert(next_state_map); KALDI_ASSERT(result.second); state_queue.push(next_state_pair); } else { // If the composed state is already in <state_map>, we can directly // use that. next_state = siter->second; } // Adds arc to <composed_clat>. if (arc1.olabel == 0) { composed_clat->AddArc(state_map[s], CompactLatticeArc(arc1.ilabel, 0, arc1.weight, next_state)); } else { Weight2 composed_weight( LatticeWeight(arc1.weight.Weight().Value1() + arc2.weight.Value(), arc1.weight.Weight().Value2()), arc1.weight.String()); composed_clat->AddArc(state_map[s], CompactLatticeArc(arc1.ilabel, arc2.olabel, composed_weight, next_state)); } } } } fst::Connect(composed_clat); } void ComputeAcousticScoresMap( const Lattice &lat, unordered_map<std::pair<int32, int32>, std::pair<BaseFloat, int32>, PairHasher<int32> > *acoustic_scores) { // typedef the arc, weight types typedef Lattice::Arc Arc; typedef Arc::Weight LatticeWeight; typedef Arc::StateId StateId; acoustic_scores->clear(); std::vector<int32> state_times; LatticeStateTimes(lat, &state_times); // Assumes the input is top sorted KALDI_ASSERT(lat.Start() == 0); for (StateId s = 0; s < lat.NumStates(); s++) { int32 t = state_times[s]; for (fst::ArcIterator<Lattice> aiter(lat, s); !aiter.Done(); aiter.Next()) { const Arc &arc = aiter.Value(); const LatticeWeight &weight = arc.weight; int32 tid = arc.ilabel; if (tid != 0) { unordered_map<std::pair<int32, int32>, std::pair<BaseFloat, int32>, PairHasher<int32> >::iterator it = acoustic_scores->find(std::make_pair(t, tid)); if (it == acoustic_scores->end()) { acoustic_scores->insert(std::make_pair(std::make_pair(t, tid), std::make_pair(weight.Value2(), 1))); } else { if (it->second.second == 2 && it->second.first / it->second.second != weight.Value2()) { KALDI_VLOG(2) << "Transitions on the same frame have different " << "acoustic costs for tid " << tid << "; " << it->second.first / it->second.second << " vs " << weight.Value2(); } it->second.first += weight.Value2(); it->second.second++; } } else { // Arcs with epsilon input label (tid) must have 0 acoustic cost KALDI_ASSERT(weight.Value2() == 0); } } LatticeWeight f = lat.Final(s); if (f != LatticeWeight::Zero()) { // Final acoustic cost must be 0 as we are reading from // non-determinized, non-compact lattice KALDI_ASSERT(f.Value2() == 0.0); } } } void ReplaceAcousticScoresFromMap( const unordered_map<std::pair<int32, int32>, std::pair<BaseFloat, int32>, PairHasher<int32> > &acoustic_scores, Lattice *lat) { // typedef the arc, weight types typedef Lattice::Arc Arc; typedef Arc::Weight LatticeWeight; typedef Arc::StateId StateId; TopSortLatticeIfNeeded(lat); std::vector<int32> state_times; LatticeStateTimes(*lat, &state_times); KALDI_ASSERT(lat->Start() == 0); for (StateId s = 0; s < lat->NumStates(); s++) { int32 t = state_times[s]; for (fst::MutableArcIterator<Lattice> aiter(lat, s); !aiter.Done(); aiter.Next()) { Arc arc(aiter.Value()); int32 tid = arc.ilabel; if (tid != 0) { unordered_map<std::pair<int32, int32>, std::pair<BaseFloat, int32>, PairHasher<int32> >::const_iterator it = acoustic_scores.find(std::make_pair(t, tid)); if (it == acoustic_scores.end()) { KALDI_ERR << "Could not find tid " << tid << " at time " << t << " in the acoustic scores map."; } else { arc.weight.SetValue2(it->second.first / it->second.second); } } else { // For epsilon arcs, set acoustic cost to 0.0 arc.weight.SetValue2(0.0); } aiter.SetValue(arc); } LatticeWeight f = lat->Final(s); if (f != LatticeWeight::Zero()) { // Set final acoustic cost to 0.0 f.SetValue2(0.0); lat->SetFinal(s, f); } } } } // namespace kaldi |