Blame view

src/lat/sausages.cc 17 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
  // lat/sausages.cc
  
  // Copyright 2012  Johns Hopkins University (Author: Daniel Povey)
  //           2015  Guoguo Chen
  //           2019  Dogan Can
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "lat/sausages.h"
  #include "lat/lattice-functions.h"
  
  namespace kaldi {
  
  // this is Figure 6 in the paper.
  void MinimumBayesRisk::MbrDecode() {
  
    for (size_t counter = 0; ; counter++) {
      NormalizeEps(&R_);
      AccStats(); // writes to gamma_
      double delta_Q = 0.0; // change in objective function.
  
      one_best_times_.clear();
      one_best_confidences_.clear();
  
      // Caution: q in the line below is (q-1) in the algorithm
      // in the paper; both R_ and gamma_ are indexed by q-1.
      for (size_t q = 0; q < R_.size(); q++) {
        if (opts_.decode_mbr) { // This loop updates R_ [indexed same as gamma_].
          // gamma_[i] is sorted in reverse order so most likely one is first.
          const std::vector<std::pair<int32, BaseFloat> > &this_gamma = gamma_[q];
          double old_gamma = 0, new_gamma = this_gamma[0].second;
          int32 rq = R_[q], rhat = this_gamma[0].first; // rq: old word, rhat: new.
          for (size_t j = 0; j < this_gamma.size(); j++)
            if (this_gamma[j].first == rq) old_gamma = this_gamma[j].second;
          delta_Q += (old_gamma - new_gamma); // will be 0 or negative; a bound on
          // change in error.
          if (rq != rhat)
            KALDI_VLOG(2) << "Changing word " << rq << " to " << rhat;
          R_[q] = rhat;
        }
        // build the outputs (time, confidences),
        if (R_[q] != 0 || opts_.print_silence) {
          // see which 'item' from the sausage-bin should we select,
          // (not necessarily the 1st one when MBR decoding disabled)
          int32 s = 0;
          for (int32 j=0; j<gamma_[q].size(); j++) {
            if (gamma_[q][j].first == R_[q]) {
              s = j;
              break;
            }
          }
          one_best_times_.push_back(times_[q][s]);
          // post-process the times,
          size_t i = one_best_times_.size();
          if (i > 1 && one_best_times_[i-2].second > one_best_times_[i-1].first) {
            // It's quite possible for this to happen, but it seems like it would
            // have a bad effect on the downstream processing, so we fix it here.
            // We resolve overlaps by redistributing the available time interval.
            BaseFloat prev_right = i > 2 ? one_best_times_[i-3].second : 0.0;
            BaseFloat left = std::max(prev_right,
                                      std::min(one_best_times_[i-2].first,
                                               one_best_times_[i-1].first));
            BaseFloat right = std::max(one_best_times_[i-2].second,
                                       one_best_times_[i-1].second);
            BaseFloat first_dur =
                one_best_times_[i-2].second - one_best_times_[i-2].first;
            BaseFloat second_dur =
                one_best_times_[i-1].second - one_best_times_[i-1].first;
            BaseFloat mid = first_dur > 0 ? left + (right - left) * first_dur /
                                       (first_dur + second_dur) : left;
            one_best_times_[i-2].first = left;
            one_best_times_[i-2].second = one_best_times_[i-1].first = mid;
            one_best_times_[i-1].second = right;
          }
          BaseFloat confidence = 0.0;
          for (int32 j = 0; j < gamma_[q].size(); j++) {
            if (gamma_[q][j].first == R_[q]) {
              confidence = gamma_[q][j].second;
              break;
            }
          }
          one_best_confidences_.push_back(confidence);
        }
      }
      KALDI_VLOG(2) << "Iter = " << counter << ", delta-Q = " << delta_Q;
      if (delta_Q == 0) break;
      if (counter > 100) {
        KALDI_WARN << "Iterating too many times in MbrDecode; stopping.";
        break;
      }
    }
    if (!opts_.print_silence) RemoveEps(&R_);
  }
  
  struct Int32IsZero {
    bool operator() (int32 i) { return (i == 0); }
  };
  // static
  void MinimumBayesRisk::RemoveEps(std::vector<int32> *vec) {
    Int32IsZero pred;
    vec->erase(std::remove_if (vec->begin(), vec->end(), pred),
               vec->end());
  }
  
  // static
  void MinimumBayesRisk::NormalizeEps(std::vector<int32> *vec) {
    RemoveEps(vec);
    vec->resize(1 + vec->size() * 2);
    int32 s = vec->size();
    for (int32 i = s/2 - 1; i >= 0; i--) {
      (*vec)[i*2 + 1] = (*vec)[i];
      (*vec)[i*2 + 2] = 0;
    }
    (*vec)[0] = 0;
  }
  
  double MinimumBayesRisk::EditDistance(int32 N, int32 Q,
                                        Vector<double> &alpha,
                                        Matrix<double> &alpha_dash,
                                        Vector<double> &alpha_dash_arc) {
    alpha(1) = 0.0; // = log(1).  Line 5.
    alpha_dash(1, 0) = 0.0; // Line 5.
    for (int32 q = 1; q <= Q; q++)
      alpha_dash(1, q) = alpha_dash(1, q-1) + l(0, r(q)); // Line 7.
    for (int32 n = 2; n <= N; n++) {
      double alpha_n = kLogZeroDouble;
      for (size_t i = 0; i < pre_[n].size(); i++) {
        const Arc &arc = arcs_[pre_[n][i]];
        alpha_n = LogAdd(alpha_n, alpha(arc.start_node) + arc.loglike);
      }
      alpha(n) = alpha_n; // Line 10.
      // Line 11 omitted: matrix was initialized to zero.
      for (size_t i = 0; i < pre_[n].size(); i++) {
        const Arc &arc = arcs_[pre_[n][i]];
        int32 s_a = arc.start_node, w_a = arc.word;
        BaseFloat p_a = arc.loglike;
        for (int32 q = 0; q <= Q; q++) {
          if (q == 0) {
            alpha_dash_arc(q) = // line 15.
                alpha_dash(s_a, q) + l(w_a, 0, true);
          } else {  // a1,a2,a3 are the 3 parts of min expression of line 17.
            int32 r_q = r(q);
            double a1 = alpha_dash(s_a, q-1) + l(w_a, r_q),
                a2 = alpha_dash(s_a, q) + l(w_a, 0, true),
                a3 = alpha_dash_arc(q-1) + l(0, r_q);
            alpha_dash_arc(q) = std::min(a1, std::min(a2, a3));
          }
          // line 19:
          alpha_dash(n, q) += Exp(alpha(s_a) + p_a - alpha(n)) * alpha_dash_arc(q);
        }
      }
    }
    return alpha_dash(N, Q); // line 23.
  }
  
  // Figure 5 in the paper.
  void MinimumBayesRisk::AccStats() {
    using std::map;
  
    int32 N = static_cast<int32>(pre_.size()) - 1,
        Q = static_cast<int32>(R_.size());
  
    Vector<double> alpha(N+1); // index (1...N)
    Matrix<double> alpha_dash(N+1, Q+1); // index (1...N, 0...Q)
    Vector<double> alpha_dash_arc(Q+1); // index 0...Q
    Matrix<double> beta_dash(N+1, Q+1); // index (1...N, 0...Q)
    Vector<double> beta_dash_arc(Q+1); // index 0...Q
    std::vector<char> b_arc(Q+1); // integer in {1,2,3}; index 1...Q
    std::vector<map<int32, double> > gamma(Q+1); // temp. form of gamma.
    // index 1...Q [word] -> occ.
  
    // The tau maps below are the sums over arcs with the same word label
    // of the tau_b and tau_e timing quantities mentioned in Appendix C of
    // the paper... we are using these to get averaged times for both the
    // the sausage bins and the 1-best output.
    std::vector<map<int32, double> > tau_b(Q+1), tau_e(Q+1);
  
    double Ltmp = EditDistance(N, Q, alpha, alpha_dash, alpha_dash_arc);
    if (L_ != 0 && Ltmp > L_) { // L_ != 0 is to rule out 1st iter.
      KALDI_WARN << "Edit distance increased: " << Ltmp << " > "
                 << L_;
    }
    L_ = Ltmp;
    KALDI_VLOG(2) << "L = " << L_;
    // omit line 10: zero when initialized.
    beta_dash(N, Q) = 1.0; // Line 11.
    for (int32 n = N; n >= 2; n--) {
      for (size_t i = 0; i < pre_[n].size(); i++) {
        const Arc &arc = arcs_[pre_[n][i]];
        int32 s_a = arc.start_node, w_a = arc.word;
        BaseFloat p_a = arc.loglike;
        alpha_dash_arc(0) = alpha_dash(s_a, 0) + l(w_a, 0, true); // line 14.
        for (int32 q = 1; q <= Q; q++) { // this loop == lines 15-18.
          int32 r_q = r(q);
          double a1 = alpha_dash(s_a, q-1) + l(w_a, r_q),
              a2 = alpha_dash(s_a, q) + l(w_a, 0, true),
              a3 = alpha_dash_arc(q-1) + l(0, r_q);
          if (a1 <= a2) {
            if (a1 <= a3) { b_arc[q] = 1; alpha_dash_arc(q) = a1; }
            else { b_arc[q] = 3; alpha_dash_arc(q) = a3; }
          } else {
            if (a2 <= a3) { b_arc[q] = 2; alpha_dash_arc(q) = a2; }
            else { b_arc[q] = 3; alpha_dash_arc(q) = a3; }
          }
        }
        beta_dash_arc.SetZero(); // line 19.
        for (int32 q = Q; q >= 1; q--) {
          // line 21:
          beta_dash_arc(q) += Exp(alpha(s_a) + p_a - alpha(n)) * beta_dash(n, q);
          switch (static_cast<int>(b_arc[q])) { // lines 22 and 23:
            case 1:
              beta_dash(s_a, q-1) += beta_dash_arc(q);
              // next: gamma(q, w(a)) += beta_dash_arc(q)
              AddToMap(w_a, beta_dash_arc(q), &(gamma[q]));
              // next: accumulating times, see decl for tau_b,tau_e
              AddToMap(w_a, state_times_[s_a] * beta_dash_arc(q), &(tau_b[q]));
              AddToMap(w_a, state_times_[n] * beta_dash_arc(q), &(tau_e[q]));
              break;
            case 2:
              beta_dash(s_a, q) += beta_dash_arc(q);
              break;
            case 3:
              beta_dash_arc(q-1) += beta_dash_arc(q);
              // next: gamma(q, epsilon) += beta_dash_arc(q)
              AddToMap(0, beta_dash_arc(q), &(gamma[q]));
              // next: accumulating times, see decl for tau_b,tau_e
              // WARNING: there was an error in Appendix C.  If we followed
              // the instructions there the next line would say state_times_[sa], but
              // it would be wrong.  I will try to publish an erratum.
              AddToMap(0, state_times_[n] * beta_dash_arc(q), &(tau_b[q]));
              AddToMap(0, state_times_[n] * beta_dash_arc(q), &(tau_e[q]));
              break;
            default:
              KALDI_ERR << "Invalid b_arc value"; // error in code.
          }
        }
        beta_dash_arc(0) += Exp(alpha(s_a) + p_a - alpha(n)) * beta_dash(n, 0);
        beta_dash(s_a, 0) += beta_dash_arc(0); // line 26.
      }
    }
    beta_dash_arc.SetZero(); // line 29.
    for (int32 q = Q; q >= 1; q--) {
      beta_dash_arc(q) += beta_dash(1, q);
      beta_dash_arc(q-1) += beta_dash_arc(q);
      AddToMap(0, beta_dash_arc(q), &(gamma[q]));
      // the statements below are actually redundant because
      // state_times_[1] is zero.
      AddToMap(0, state_times_[1] * beta_dash_arc(q), &(tau_b[q]));
      AddToMap(0, state_times_[1] * beta_dash_arc(q), &(tau_e[q]));
    }
    for (int32 q = 1; q <= Q; q++) { // a check (line 35)
      double sum = 0.0;
      for (map<int32, double>::iterator iter = gamma[q].begin();
           iter != gamma[q].end(); ++iter) sum += iter->second;
      if (fabs(sum - 1.0) > 0.1)
        KALDI_WARN << "sum of gamma[" << q << ",s] is " << sum;
    }
    // The next part is where we take gamma, and convert
    // to the class member gamma_, which is using a different
    // data structure and indexed from zero, not one.
    gamma_.clear();
    gamma_.resize(Q);
    for (int32 q = 1; q <= Q; q++) {
      for (map<int32, double>::iterator iter = gamma[q].begin();
           iter != gamma[q].end(); ++iter)
        gamma_[q-1].push_back(
            std::make_pair(iter->first, static_cast<BaseFloat>(iter->second)));
      // sort gamma_[q-1] from largest to smallest posterior.
      GammaCompare comp;
      std::sort(gamma_[q-1].begin(), gamma_[q-1].end(), comp);
    }
    // We do the same conversion for the state times tau_b and tau_e:
    // they get turned into the times_ data member, which has zero-based
    // indexing.
    times_.clear();
    times_.resize(Q);
    sausage_times_.clear();
    sausage_times_.resize(Q);
    for (int32 q = 1; q <= Q; q++) {
      double t_b = 0.0, t_e = 0.0;
      for (std::vector<std::pair<int32, BaseFloat>>::iterator iter = gamma_[q-1].begin();
           iter != gamma_[q-1].end(); ++iter) {
        double w_b = tau_b[q][iter->first], w_e = tau_e[q][iter->first];
        if (w_b > w_e)
          KALDI_WARN << "Times out of order";  // this is quite bad.
        times_[q-1].push_back(
            std::make_pair(static_cast<BaseFloat>(w_b / iter->second),
                           static_cast<BaseFloat>(w_e / iter->second)));
        t_b += w_b;
        t_e += w_e;
      }
      sausage_times_[q-1].first = t_b;
      sausage_times_[q-1].second = t_e;
      if (sausage_times_[q-1].first > sausage_times_[q-1].second)
        KALDI_WARN << "Times out of order";  // this is quite bad.
      if (q > 1 && sausage_times_[q-2].second > sausage_times_[q-1].first) {
        // We previously had a warning here, but now we'll just set both
        // those values to their average.  It's quite possible for this
        // condition to happen, but it seems like it would have a bad effect
        // on the downstream processing, so we fix it.
        sausage_times_[q-2].second = sausage_times_[q-1].first =
            0.5 * (sausage_times_[q-2].second + sausage_times_[q-1].first);
      }
    }
  }
  
  void MinimumBayesRisk::PrepareLatticeAndInitStats(CompactLattice *clat) {
    KALDI_ASSERT(clat != NULL);
  
    CreateSuperFinal(clat); // Add super-final state to clat... this is
    // one of the requirements of the MBR algorithm, as mentioned in the
    // paper (i.e. just one final state).
  
    // Topologically sort the lattice, if not already sorted.
    kaldi::uint64 props = clat->Properties(fst::kFstProperties, false);
    if (!(props & fst::kTopSorted)) {
      if (fst::TopSort(clat) == false)
        KALDI_ERR << "Cycles detected in lattice.";
    }
    CompactLatticeStateTimes(*clat, &state_times_); // work out times of
    // the states in clat
    state_times_.push_back(0); // we'll convert to 1-based numbering.
    for (size_t i = state_times_.size()-1; i > 0; i--)
      state_times_[i] = state_times_[i-1];
  
    // Now we convert the information in "clat" into a special internal
    // format (pre_, post_ and arcs_) which allows us to access the
    // arcs preceding any given state.
    // Note: in our internal format the states will be numbered from 1,
    // which involves adding 1 to the OpenFst states.
    int32 N = clat->NumStates();
    pre_.resize(N+1);
  
    // Careful: "Arc" is a class-member struct, not an OpenFst type of arc as one
    // would normally assume.
    for (int32 n = 1; n <= N; n++) {
      for (fst::ArcIterator<CompactLattice> aiter(*clat, n-1);
           !aiter.Done();
           aiter.Next()) {
        const CompactLatticeArc &carc = aiter.Value();
        Arc arc; // in our local format.
        arc.word = carc.ilabel; // == carc.olabel
        arc.start_node = n;
        arc.end_node = carc.nextstate + 1; // convert to 1-based.
        arc.loglike = - (carc.weight.Weight().Value1() +
                         carc.weight.Weight().Value2());
        // loglike: sum graph/LM and acoustic cost, and negate to
        // convert to loglikes.  We assume acoustic scaling is already done.
  
        pre_[arc.end_node].push_back(arcs_.size()); // record index of this arc.
        arcs_.push_back(arc);
      }
    }
  }
  
  MinimumBayesRisk::MinimumBayesRisk(const CompactLattice &clat_in,
                                     MinimumBayesRiskOptions opts) : opts_(opts) {
    CompactLattice clat(clat_in); // copy.
  
    PrepareLatticeAndInitStats(&clat);
  
    // We don't need to look at clat.Start() or clat.Final(state):
    // we know clat.Start() == 0 since it's topologically sorted,
    // and clat.Final(state) is Zero() except for One() at the last-
    // numbered state, thanks to CreateSuperFinal and the topological
    // sorting.
  
    { // Now set R_ to one best in the FST.
      RemoveAlignmentsFromCompactLattice(&clat); // will be more efficient
      // in best-path if we do this.
      Lattice lat;
      ConvertLattice(clat, &lat); // convert from CompactLattice to Lattice.
      fst::VectorFst<fst::StdArc> fst;
      ConvertLattice(lat, &fst); // convert from lattice to normal FST.
      fst::VectorFst<fst::StdArc> fst_shortest_path;
      fst::ShortestPath(fst, &fst_shortest_path); // take shortest path of FST.
      std::vector<int32> alignment, words;
      fst::TropicalWeight weight;
      GetLinearSymbolSequence(fst_shortest_path, &alignment, &words, &weight);
      KALDI_ASSERT(alignment.empty()); // we removed the alignment.
      R_ = words;
      L_ = 0.0; // Set current edit-distance to 0 [just so we know
      // when we're on the 1st iter.]
    }
  
    MbrDecode();
  
  }
  
  MinimumBayesRisk::MinimumBayesRisk(const CompactLattice &clat_in,
                                     const std::vector<int32> &words,
                                     MinimumBayesRiskOptions opts) : opts_(opts) {
    CompactLattice clat(clat_in); // copy.
  
    PrepareLatticeAndInitStats(&clat);
  
    R_ = words;
    L_ = 0.0;
  
    MbrDecode();
  }
  
  MinimumBayesRisk::MinimumBayesRisk(const CompactLattice &clat_in,
                                     const std::vector<int32> &words,
                                     const std::vector<std::pair<BaseFloat,BaseFloat> > &times,
                                     MinimumBayesRiskOptions opts) : opts_(opts) {
    CompactLattice clat(clat_in); // copy.
  
    PrepareLatticeAndInitStats(&clat);
  
    R_ = words;
    sausage_times_ = times;
    L_ = 0.0;
  
    MbrDecode();
  }
  
  
  }  // namespace kaldi