Blame view

src/lat/word-align-lattice-lexicon.cc 42.5 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
  // lat/word-align-lattice-lexicon.cc
  
  // Copyright 2013 Johns Hopkins University (Author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "lat/phone-align-lattice.h"
  #include "lat/word-align-lattice-lexicon.h"
  #include "lat/lattice-functions.h"
  #include "hmm/transition-model.h"
  #include "hmm/hmm-utils.h"
  #include "util/stl-utils.h"
  
  namespace kaldi {
  
  const int kTemporaryEpsilon = -2;
  const int kNumStatesOffset = 1000; // relates to how we apply the
  // max-states to the lattices; relates to the --max-expand option which
  // stops this blowing up for pathological cases or in case of a mismatch.
  
  class LatticeLexiconWordAligner {
   public:
    typedef CompactLatticeArc::StateId StateId;
    typedef CompactLatticeArc::Label Label;
    typedef WordAlignLatticeLexiconInfo::ViabilityMap ViabilityMap;
    typedef WordAlignLatticeLexiconInfo::LexiconMap LexiconMap;
    typedef WordAlignLatticeLexiconInfo::NumPhonesMap NumPhonesMap;
  
    /*
      The Freshness enum is applied to phone and word-sequences in the computation
      state; it is related to the epsilon sequencing problem.  If a phone or word
      is new (added by the latest transition), it is fresh.  We are only concerned
      with the freshness of the left-most word (i.e. word index 0) in words_, and
      the freshness of that can take only two values, kNotFresh or kFresh.  As
      regards the phones_ variable, the difference between kFresh and kAllFresh
      is: if we just appended a phone it's kFresh, but if we just shifted off a
      phone or phones by outputting a nonempty word it's kAllFresh, meaning that
      all sub-sequences of the phone sequence are new.  Note: if a phone or
      word-sequence is empty the freshness of that sequence does not matter or is
      not defined; we'll let it default to kNotFresh.
     */
    typedef enum {
      kNotFresh,
      kFresh,
      kAllFresh
    } Freshness;
  
    class ComputationState {
      /// The state of the computation in which,
      /// along a single path in the lattice, we work out the word
      /// boundaries and output aligned arcs.
     public:
  
      /// Advance the computation state by adding the symbols and weights from
      /// this arc.  Outputs weight to "leftover_weight" and sets the weight to
      /// 1.0 (this helps keep the state space small).  Note: because we
      /// previously did PhoneAlignLattice, we can assume this arc corresponds to
      /// exactly one or zero phones.
      void Advance(const CompactLatticeArc &arc,
                   const TransitionModel &tmodel,
                   LatticeWeight *leftover_weight);
  
      /// Returns true if, assuming we were to add one or more phones by calling
      /// Advance one or more times on this, we might be able later to
      /// successfully call TakeTransition.  It's a kind of co-accessibility test
      /// that avoids us creating an exponentially large number of states that
      /// would contribute nothing to the final output.
      bool ViableIfAdvanced(const ViabilityMap &viability_map) const;
  
      int32 NumPhones() const { return phones_.size(); }
      int32 NumWords() const { return words_.size(); }
      int32 PendingWord() const { KALDI_ASSERT(!words_.empty()); return words_[0]; }
      Freshness WordFreshness() const { return word_fresh_; }
      Freshness PhoneFreshness() const { return phone_fresh_; }
  
      /// This may be called at the end of a lattice, if it was forced
      /// out.  Note: we will only use "partial_word_label" if there are
      /// phones without corresponding words; otherwise we'll use the
      /// word label that was there.
      void TakeForcedTransition(int32 partial_word_label,
                                ComputationState *next_state,
                                CompactLatticeArc *arc_out) const;
  
      /// Take a transition, if possible; consume "num_phones" phones and (if
      /// word_id != 0) the word "word_id" which must be the first word in words_.
      /// Returns true if we could take the transition.
      bool TakeTransition(const LexiconMap &lexicon_map,
                          int32 word_id,
                          int32 num_phones,
                          ComputationState *next_state,
                          CompactLatticeArc *arc_out) const;
  
      bool IsEmpty() const { return (transition_ids_.empty() && words_.empty()); }
  
      /// FinalWeight() will return "weight" if both transition_ids
      /// and word_labels are empty, otherwise it will return
      /// Weight::Zero().
      LatticeWeight FinalWeight() const {
        return (IsEmpty() ? weight_ : LatticeWeight::Zero());
      }
  
      size_t Hash() const {
        VectorHasher<int32> vh;
        const int32 p1 = 11117, p2 = 90647, p3 = 3967, p4 = 3557; // primes.
        int32 ans = 0;
        for (int32 i = 0; i < static_cast<int32>(transition_ids_.size()); i++) {
          ans *= p1;
          ans += vh(transition_ids_[i]);
        }
        ans += p2 * vh(words_)
            + static_cast<int32>(word_fresh_) * p3
            + static_cast<int32>(phone_fresh_) * p4;
        // phones_ is determined by transition-id sequence so we don't
        // need to include it in the hash.
        return ans;
      }
  
      bool operator == (const ComputationState &other) const {
        // phones_ is determined by transition-id sequence so don't
        // need to compare it.
        return (transition_ids_ == other.transition_ids_ &&
                words_ == other.words_ &&
                weight_ == other.weight_ &&
                phone_fresh_ == other.phone_fresh_ &&
                word_fresh_ == other.word_fresh_);
      }
  
      ComputationState(): phone_fresh_(kNotFresh), word_fresh_(kNotFresh),
                          weight_(LatticeWeight::One()) { } // initial state.
  
      ComputationState(const ComputationState &other):
          phones_(other.phones_), words_(other.words_),
          phone_fresh_(other.phone_fresh_), word_fresh_(other.word_fresh_),
          transition_ids_(other.transition_ids_), weight_(other.weight_) { }
     private:
      std::vector<int32> phones_; // sequence of pending phones
      std::vector<int32> words_; // sequence of pending words.
  
      // The following variables tell us whether the phones_ and/or words_
      // variables were modified by the last operation on the computation state.
      // This is used to make sure we don't have multiple ways of handling the
      // same sequence, by taking transitions at multiple points (see code for
      // more details).  It's related to the epsilon sequencing problem.
      // See the declaration above of the enum "Freshness".
      Freshness phone_fresh_;
      Freshness word_fresh_;
  
      std::vector<std::vector<int32> > transition_ids_; // sequence of transition-ids for each phone..
  
      LatticeWeight weight_; // contains two floats.
    };
  
  
    static void AppendVectors(
        std::vector<std::vector<int32> >::const_iterator input_begin,
        std::vector<std::vector<int32> >::const_iterator input_end,
        std::vector<int32> *output);
  
    struct Tuple {
      Tuple(StateId input_state, ComputationState comp_state):
          input_state(input_state), comp_state(comp_state) {}
      Tuple() {}
      StateId input_state;
      ComputationState comp_state;
    };
  
    struct TupleHash {
      size_t operator() (const Tuple &state) const {
        return state.input_state + 102763 * state.comp_state.Hash();
        // 102763 is just an arbitrary prime number
      }
    };
    struct TupleEqual {
      bool operator () (const Tuple &state1, const Tuple &state2) const {
        // treat this like operator ==
        return (state1.input_state == state2.input_state
                && state1.comp_state == state2.comp_state);
      }
    };
  
    typedef unordered_map<Tuple, StateId, TupleHash, TupleEqual> MapType;
  
    // This function may alter queue_.
    StateId GetStateForTuple(const Tuple &tuple) {
      MapType::iterator iter = map_.find(tuple);
      if (iter == map_.end()) { // not in map.
        StateId output_state = lat_out_->AddState();
        map_[tuple] = output_state;
        queue_.push_back(std::make_pair(tuple, output_state));
        return output_state;
      } else {
        return iter->second;
      }
    }
  
    // This function may alter queue_, via GetStateForTuple.
    void ProcessTransition(StateId prev_output_state, // state-id of from-state in output lattice
                           const Tuple &next_tuple,
                           CompactLatticeArc *arc) { // arc to add (must first modify it by adding "nextstate")
      arc->nextstate = GetStateForTuple(next_tuple); // adds it to queue_ if new.
      lat_out_->AddArc(prev_output_state, *arc);
    }
  
    // Process any epsilon transitions out of this state.  This refers to
    // filler-words, such as silence, which have epsilon as the symbol in the
    // original lattice, or no symbol at all (typically the original lattice
    // will be determinized with epsilon-removal so there is no separate arc,
    // just one or more extra phones that don't match up with any word.
    void ProcessEpsilonTransitions(const Tuple &tuple, StateId output_state);
  
    // Process any non-epsilon transitions out of this state in the output lattice.
    void ProcessWordTransitions(const Tuple &tuple, StateId output_state);
  
    // Take any transitions that correspond to advancing along arcs arc in the
    // original FST.
    void PossiblyAdvanceArc(const Tuple &tuple, StateId output_state);
  
    /// Process all final-probs (normal case, no forcing-out).
    /// returns true if we had at least one final-prob.
    bool ProcessFinal();
  
    /// This function returns true if the state "output_state" in the output
    /// lattice has arcs out that have either a non-epsilon symbol or transition-ids
    /// in the string of the weight.
    bool HasNonEpsArcsOut(StateId output_state);
  
    /// Creates arcs from all the tuples that were final in the original lattice
    /// but have no arcs out of them in the output lattice that consume words or
    /// phones-- does so by "forcing out" any words and phones there are pending
    /// in the computation states.  This function is only called if no states were
    /// "naturally" final; this will only happen for lattices that were forced out
    /// during decoding.
    void ProcessFinalForceOut();
  
    // Process all final-probs -- a wrapper function that handles the forced-out case.
    void ProcessFinalWrapper() {
      if (final_queue_.empty()) {
        KALDI_WARN << "No final-probs to process.";
        error_ = true;
        return;
      }
      if (ProcessFinal()) return;
      error_ = true;
      KALDI_WARN << "Word-aligning lattice: lattice was forced out, will have partial words at end.";
  
      ProcessFinalForceOut();
  
      if (ProcessFinal()) return;
      KALDI_WARN << "Word-aligning lattice: had no final-states even after forcing out "
                 << "(result will be empty).  This probably indicates wrong input.";
      return;
    }
  
    void ProcessQueueElement() {
      KALDI_ASSERT(!queue_.empty());
      Tuple tuple = queue_.back().first;
      StateId output_state = queue_.back().second;
      queue_.pop_back();
  
      ProcessEpsilonTransitions(tuple, output_state);
      ProcessWordTransitions(tuple, output_state);
      PossiblyAdvanceArc(tuple, output_state);
  
      // Note: we'll do a bit more filtering in ProcessFinal(), meaning
      // that we won't necessarily give a final-prob to all of the things
      // that go onto final_queue_.
      if (lat_in_.Final(tuple.input_state) != CompactLatticeWeight::Zero())
        final_queue_.push_back(std::make_pair(tuple, output_state));
    }
  
    LatticeLexiconWordAligner(const CompactLattice &lat,
                              const TransitionModel &tmodel,
                              const WordAlignLatticeLexiconInfo &lexicon_info,
                              int32 max_states,
                              int32 partial_word_label,
                              CompactLattice *lat_out):
        lat_in_(lat), tmodel_(tmodel), lexicon_info_(lexicon_info),
        max_states_(max_states),
        lat_out_(lat_out),
        partial_word_label_(partial_word_label == 0 ?
                            kTemporaryEpsilon : partial_word_label),
        error_(false) {
      // lat_in_ is after PhoneAlignLattice, it is not deterministic and contains epsilons
  
      fst::CreateSuperFinal(&lat_in_); // Creates a super-final state, so the
      // only final-probs are One().  Note: the member lat_in_ is not a reference.
  
    }
  
    // Removes epsilons; also removes unreachable states...
    // not sure if these would exist if original was connected.
    // This also replaces the temporary symbols for the silence
    // and partial-words, with epsilons, if we wanted epsilons.
    void RemoveEpsilonsFromLattice() {
      Connect(lat_out_);
      RmEpsilon(lat_out_, true); // true = connect.
      std::vector<int32> syms_to_remove;
      syms_to_remove.push_back(kTemporaryEpsilon);
      RemoveSomeInputSymbols(syms_to_remove, lat_out_);
      Project(lat_out_, fst::PROJECT_INPUT);
    }
  
    bool AlignLattice() {
      lat_out_->DeleteStates();
      if (lat_in_.Start() == fst::kNoStateId) {
        KALDI_WARN << "Trying to word-align empty lattice.";
        return false;
      }
      ComputationState initial_comp_state;
      Tuple initial_tuple(lat_in_.Start(), initial_comp_state);
      StateId start_state = GetStateForTuple(initial_tuple);
      lat_out_->SetStart(start_state);
  
      while (!queue_.empty()) {
        if (max_states_ > 0 && lat_out_->NumStates() > max_states_) {
          KALDI_WARN << "Number of states in lattice exceeded max-states of "
                     << max_states_ << ", original lattice had "
                     << lat_in_.NumStates() << " states.  Returning empty lattice.";
          lat_out_->DeleteStates();
          return false;
        }
        ProcessQueueElement();
      }
      ProcessFinalWrapper();
  
      RemoveEpsilonsFromLattice();
  
      return !error_;
    }
  
    CompactLattice lat_in_;
    const TransitionModel &tmodel_;
    const WordAlignLatticeLexiconInfo &lexicon_info_;
    int32 max_states_;
    CompactLattice *lat_out_;
  
    std::vector<std::pair<Tuple, StateId> > queue_;
  
    std::vector<std::pair<Tuple, StateId> > final_queue_; // as queue_, but
    // just contains states that may have final-probs to process.  We process these
    // all at once, at the end.
  
    MapType map_; // map from tuples to StateId.
    int32 partial_word_label_;
    bool error_;
  };
  
  // static
  void LatticeLexiconWordAligner::AppendVectors(
      std::vector<std::vector<int32> >::const_iterator input_begin,
      std::vector<std::vector<int32> >::const_iterator input_end,
      std::vector<int32> *output) {
    size_t size = 0;
    for (std::vector<std::vector<int32> >::const_iterator iter = input_begin;
         iter != input_end;
         ++iter)
      size += iter->size();
    output->clear();
    output->reserve(size);
    for (std::vector<std::vector<int32> >::const_iterator iter = input_begin;
         iter != input_end;
         ++iter)
      output->insert(output->end(), iter->begin(), iter->end());
  }
  
  void LatticeLexiconWordAligner::ProcessEpsilonTransitions(
      const Tuple &tuple, StateId output_state) {
    const ComputationState &comp_state = tuple.comp_state;
    StateId input_state = tuple.input_state;
    StateId zero_word = 0;
    NumPhonesMap::const_iterator iter =
        lexicon_info_.num_phones_map_.find(zero_word);
    if (iter == lexicon_info_.num_phones_map_.end()) {
      return; // No epsilons to match; this can only happen if the lexicon
      // we were provided had no lines with 0 as the first entry, i.e.  no
      // optional silences or the like.
    }
    // Now decide what range of phone-lengths we must process.  This is all
    // about only getting a single opportunity to process any given sequence of
    // phones.
    int32 min_num_phones, max_num_phones;
  
    if (comp_state.PhoneFreshness() == kAllFresh) {
      // All sub-sequences of the phone sequence are fresh because we just
      // shifted some phones off, so we do this for all lengths.  We can limit
      // ourselves to the range of possible lengths for the epsilon symbol,
      // in the lexicon.
      min_num_phones = iter->second.first;
      max_num_phones = std::min(iter->second.second, comp_state.NumPhones());
    } else if (comp_state.PhoneFreshness() == kFresh) {
      // only last phone is "fresh", so only consider the sequence of all
      // phones including the last one.
      int32 num_phones = comp_state.NumPhones();
      if (num_phones >= iter->second.first &&
          num_phones <= iter->second.second) {
        min_num_phones = num_phones;
        max_num_phones = num_phones;
      } else {
        return;
      }
    } else { // kNotFresh
      return;
    }
  
    if (min_num_phones == 0)
      KALDI_ERR << "Lexicon error: epsilon transition that produces no output:";
  
    for (int32 num_phones = min_num_phones;
         num_phones <= max_num_phones;
         num_phones++) {
      Tuple next_tuple;
      next_tuple.input_state = input_state; // We're not taking a transition in the
      // input FST so this stays the same.
      CompactLatticeArc arc;
      if (comp_state.TakeTransition(lexicon_info_.lexicon_map_,
                                    zero_word,
                                    num_phones,
                                    &next_tuple.comp_state,
                                    &arc)) {
        ProcessTransition(output_state, next_tuple, &arc);
      }
    }
  }
  
  void LatticeLexiconWordAligner::ProcessWordTransitions(
      const Tuple &tuple, StateId output_state) {
    const ComputationState &comp_state = tuple.comp_state;
    StateId input_state = tuple.input_state;
    if (comp_state.NumWords() > 0) {
      int32 min_num_phones, max_num_phones;
      int32 word_id = comp_state.PendingWord();
  
      if (comp_state.WordFreshness() == kFresh ||
          comp_state.PhoneFreshness() == kAllFresh) {
        // Just saw word, or shifted phones,
        // so 1st opportunity to process phone-sequences of all possible sizes,
        // with this word.
        NumPhonesMap::const_iterator iter =
            lexicon_info_.num_phones_map_.find(word_id);
        if (iter == lexicon_info_.num_phones_map_.end()) {
          KALDI_ERR << "Word " << word_id << " is not present in the lexicon.";
        }
        min_num_phones = iter->second.first;
        max_num_phones = std::min(iter->second.second,
                                  comp_state.NumPhones());
      } else if (comp_state.PhoneFreshness() == kFresh) {
        // just the latest phone is new -> just try to process the
        // phone-sequence of all the phones we have.
        min_num_phones = comp_state.NumPhones();
        max_num_phones = min_num_phones;
      } else {
        return; // Nothing to do, since neither the word nor the phones are fresh.
      }
  
      for (int32 num_phones = min_num_phones;
           num_phones <= max_num_phones;
           num_phones++) {
        Tuple next_tuple;
        next_tuple.input_state = input_state; // We're not taking a transition in the
        // input FST so this stays the same.
        CompactLatticeArc arc;
        if (comp_state.TakeTransition(lexicon_info_.lexicon_map_,
                                      word_id,
                                      num_phones,
                                      &next_tuple.comp_state,
                                      &arc)) {
          ProcessTransition(output_state, next_tuple, &arc);
        }
      }
    }
  }
  
  
  void LatticeLexiconWordAligner::PossiblyAdvanceArc(
      const Tuple &tuple, StateId output_state) {
    if (tuple.comp_state.ViableIfAdvanced(lexicon_info_.viability_map_)) {
      for(fst::ArcIterator<CompactLattice> aiter(lat_in_, tuple.input_state);
          !aiter.Done(); aiter.Next()) {
        const CompactLatticeArc &arc_in = aiter.Value();
        Tuple next_tuple(arc_in.nextstate, tuple.comp_state);
        LatticeWeight arc_weight;
        next_tuple.comp_state.Advance(arc_in, tmodel_, &arc_weight);
        // Note: GetStateForTuple will add the tuple to the queue,
        // if necessary.
  
        StateId next_output_state = GetStateForTuple(next_tuple);
        CompactLatticeArc arc_out(0, 0,
                                  CompactLatticeWeight(arc_weight,
                                                       std::vector<int32>()),
                                  next_output_state);
        lat_out_->AddArc(output_state,
                         arc_out);
      }
    }
  }
  
  bool LatticeLexiconWordAligner::ProcessFinal() {
    bool saw_final = false;
    // Find final-states...
    for (size_t i = 0; i < final_queue_.size(); i++) {
      const Tuple &tuple = final_queue_[i].first;
      StateId output_state = final_queue_[i].second;
      KALDI_ASSERT(lat_in_.Final(tuple.input_state) == CompactLatticeWeight::One());
      LatticeWeight final_weight = tuple.comp_state.FinalWeight();
      if (final_weight != LatticeWeight::Zero()) {
        // note: final_weight is only nonzero if there are no
        // pending transition-ids, so there is no string component.
        std::vector<int32> empty_vec;
        lat_out_->SetFinal(output_state,
                           CompactLatticeWeight(final_weight, empty_vec));
        saw_final = true;
      }
    }
    return saw_final;
  }
  
  bool LatticeLexiconWordAligner::HasNonEpsArcsOut(StateId output_state) {
    for (fst::ArcIterator<CompactLattice> aiter(*lat_out_, output_state);
         !aiter.Done(); aiter.Next()) {
      const CompactLatticeArc &arc = aiter.Value();
      if (arc.ilabel != 0 || arc.olabel != 0 || !arc.weight.String().empty())
        return true;
    }
    return false;
  }
  
  void LatticeLexiconWordAligner::ProcessFinalForceOut() {
    KALDI_ASSERT(queue_.empty());
    std::vector<std::pair<Tuple, StateId> > new_final_queue_;
    new_final_queue_.reserve(final_queue_.size());
    for (size_t i = 0; i < final_queue_.size();i++) { // note: all the states will
      // be final in the orig. lattice
      const Tuple &tuple = final_queue_[i].first;
      StateId output_state = final_queue_[i].second;
  
      if (!HasNonEpsArcsOut(output_state)) { // This if-statement
        // avoids forcing things out too early, when they had words
        // that could naturally have been put out.  [without it,
        // we'd have multiple alternate paths at the end.]
  
        CompactLatticeArc arc;
        Tuple next_tuple;
        next_tuple.input_state = tuple.input_state;
        tuple.comp_state.TakeForcedTransition(partial_word_label_,
                                              &next_tuple.comp_state,
                                              &arc);
        // Note: the following call may add to queue_, but we'll clear it,
        // we don't want to process these states.
        StateId new_state = GetStateForTuple(next_tuple);
        arc.nextstate = new_state;
        lat_out_->AddArc(output_state, arc);
        new_final_queue_.push_back(std::make_pair(next_tuple, new_state));
      }
    }
    queue_.clear();
    std::swap(final_queue_, new_final_queue_);
  }
  
  void LatticeLexiconWordAligner::ComputationState::Advance(
      const CompactLatticeArc &arc, const TransitionModel &tmodel, LatticeWeight *weight) {
    const std::vector<int32> &tids = arc.weight.String();
    int32 phone;
    if (tids.empty()) phone = 0;
    else {
      phone = tmodel.TransitionIdToPhone(tids.front());
      KALDI_ASSERT(phone == tmodel.TransitionIdToPhone(tids.back()) &&
                   "Error: lattice is not phone-aligned.");
    }
    if (arc.ilabel != 0) { // note: arc.ilabel==arc.olabel (acceptor)
      words_.push_back(arc.ilabel);
      // Note: the word freshness only applies to the word in position 0,
      // so only if the word-sequence is now of size 1, is it fresh.
      if (words_.size() == 1) word_fresh_ = kFresh;
      else word_fresh_ = kNotFresh;
    } else { // No word added -> word not fresh.
      word_fresh_ = kNotFresh;
    }
    if (phone != 0) {
      phones_.push_back(phone);
      transition_ids_.push_back(tids);
      phone_fresh_ = kFresh;
    } else {
      phone_fresh_ = kNotFresh;
    }
    *weight = Times(weight_, arc.weight.Weight()); // will go on arc in output lattice
    weight_ = LatticeWeight::One();
  }
  
  
  bool LatticeLexiconWordAligner::ComputationState::ViableIfAdvanced(
      const ViabilityMap &viability_map) const {
    /* This will ideally to return true if and only if we can ever take
       any kind of transition out of this state after "advancing" it by adding
       words and/or phones.  It's OK to return true in some cases where the
       condition is false, though, if it's a pain to check, because the result
       will just be doing extra work for nothing (those states won't be
       co-accessible in the output).
    */
    if (phones_.empty()) return true;
    if (words_.empty()) return true;
    else {
      // neither phones_ or words_ is empty.  Return true if a longer sequence
      // than this phone sequence can have either zero (<eps>/epsilon) or the
      // first element of words_, as an entry in the lexicon with that phone
      // sequence.
      ViabilityMap::const_iterator iter = viability_map.find(phones_);
      if (iter == viability_map.end()) return false;
      else {
        const std::vector<int32> &this_set = iter->second; // sorted vector.
        // Return true if either 0 or words_[0] is in the set.  If 0 is
        // in the set, it will be the 1st element of the vector, because it's
        // the lowest element.
        return (this_set.front() == 0 ||
                std::binary_search(this_set.begin(), this_set.end(), words_[0]));
      }
    }
  }
  
  
  void LatticeLexiconWordAligner::ComputationState::TakeForcedTransition(
      int32 partial_word_label,
      ComputationState *next_state,
      CompactLatticeArc *arc_out) const {
    KALDI_ASSERT(!IsEmpty());
  
    next_state->phones_.clear();
    next_state->words_.clear();
    next_state->transition_ids_.clear();
    // neither of the following variables should matter, actually,
    // they will never be inspected.  So just set them to kFresh for consistency,
    // so they end up at the same place in the tuple-map_.
    next_state->word_fresh_ = kFresh;
    next_state->phone_fresh_ = kFresh;
    next_state->weight_ = LatticeWeight::One();
  
    int32 word_id;
    if (words_.size() >= 1) {
      word_id = words_[0];
      if (words_.size() > 1)
        KALDI_WARN << "Word-aligning lattice: discarding extra word at end of lattice"
                   << "(forced-out).";
    } else {
      word_id = partial_word_label;
    }
    KALDI_ASSERT(word_id != 0);  // any zeros would have been replaced with
                                 // 'temporary epsilon' = 2.
    std::vector<int32> appended_transition_ids;
    AppendVectors(transition_ids_.begin(),
                  transition_ids_.end(),
                  &appended_transition_ids);
    arc_out->ilabel = word_id;
    arc_out->olabel = word_id;
    arc_out->weight = CompactLatticeWeight(weight_,
                                           appended_transition_ids);
    // arc_out->nextstate will be set by the calling code.
  }
  
  
  bool LatticeLexiconWordAligner::ComputationState::TakeTransition(
      const LexiconMap &lexicon_map, int32 word_id, int32 num_phones,
      ComputationState *next_state, CompactLatticeArc *arc_out) const {
    KALDI_ASSERT(word_id == 0 || (!words_.empty() && word_id == words_[0]));
    KALDI_ASSERT(num_phones <= static_cast<int32>(phones_.size()));
  
    std::vector<int32> lexicon_key;
    lexicon_key.reserve(1 + num_phones);
    lexicon_key.push_back(word_id); // put 1st word in lexicon_key.
    lexicon_key.insert(lexicon_key.end(),
                       phones_.begin(), phones_.begin() + num_phones);
    LexiconMap::const_iterator iter = lexicon_map.find(lexicon_key);
    if (iter == lexicon_map.end()) { // no such entry
      return false;
    } else { // Entry exists.  We'll create an arc.
      next_state->phones_.assign(phones_.begin() + num_phones, phones_.end());
      next_state->words_.assign(words_.begin() + (word_id == 0 ? 0 : 1),
                                words_.end());
      next_state->transition_ids_.assign(transition_ids_.begin() + num_phones,
                                         transition_ids_.end());
      next_state->word_fresh_ =
          (word_id != 0 && !next_state->words_.empty()) ? kFresh : kNotFresh;
      next_state->phone_fresh_ =
          (next_state->phones_.empty() || num_phones == 0) ? kNotFresh : kAllFresh;
  
      // this next thing is a bit hard to explain.  If we just consumed a word with
      // no phones, we treat the phones as fresh.  The idea is that if we need to
      // both consume a word with no phones and a phone with no words (e.g.
      // an empty word and then silence), we need to have the phones marked
      // as fresh in order for this to be possible.
      if (num_phones == 0 && word_id != 0 && !next_state->phones_.empty())
        next_state->phone_fresh_ = kAllFresh;
  
      next_state->weight_ = LatticeWeight::One();
  
      if (GetVerboseLevel() >= 5) {
        std::ostringstream ostr;
        for (size_t i = 0; i < num_phones; i++)
          ostr << phones_[i] << " ";
        KALDI_VLOG(5) << "Taking arc with word = " << word_id
                      << " and phones = " << ostr.str()
                      << ", output-word = " << iter->second
                      << ", dest-state has num-words = " << next_state->words_.size()
                      << " and num-phones = " << next_state->phones_.size();
      }
  
      // Set arc_out:
      Label word_id = iter->second; // word_id will typically be
      // the same as words_[0], i.e. the
      // word we consumed.
  
      KALDI_ASSERT(word_id != 0);  // we replaced zeros with 'temporary epsilon' = -2.
  
      std::vector<int32> appended_transition_ids;
      AppendVectors(transition_ids_.begin(),
                    transition_ids_.begin() + num_phones,
                    &appended_transition_ids);
      arc_out->ilabel = word_id;
      arc_out->olabel = word_id;
      arc_out->weight = CompactLatticeWeight(weight_,
                                             appended_transition_ids);
      // arc_out->nextstate will be set in the calling code.
      return true;
    }
  }
  
  
  
  // Returns true if this vector of transition-ids could be a valid
  // word.  Note: for testing, we assume that the lexicon always
  // has the same input-word and output-word.  The other case is complex
  // to test.
  static bool IsPlausibleWord(const WordAlignLatticeLexiconInfo &lexicon_info,
                              const TransitionModel &tmodel,
                              int32 word_id,
                              const std::vector<int32> &transition_ids) {
  
    std::vector<std::vector<int32> > split_alignment; // Split into phones.
    if (!SplitToPhones(tmodel, transition_ids, &split_alignment)) {
      KALDI_WARN << "Could not split word into phones correctly (forced-out?)";
    }
    std::vector<int32> phones(split_alignment.size());
    for (size_t i = 0; i < split_alignment.size(); i++) {
      KALDI_ASSERT(!split_alignment[i].empty());
      phones[i] = tmodel.TransitionIdToPhone(split_alignment[i][0]);
    }
    std::vector<int32> lexicon_entry;
    lexicon_entry.push_back(word_id);
    lexicon_entry.insert(lexicon_entry.end(), phones.begin(), phones.end());
  
    if (!lexicon_info.IsValidEntry(lexicon_entry)) {
      std::ostringstream ostr;
      for (size_t i = 0; i < lexicon_entry.size(); i++)
        ostr << lexicon_entry[i] << ' ';
      KALDI_WARN << "Invalid arc in aligned lattice (code error?) lexicon-entry is " << ostr.str();
      return false;
    } else {
      return true;
    }
  }
  
  void WordAlignLatticeLexiconInfo::UpdateViabilityMap(
      const std::vector<int32> &lexicon_entry) {
    int32 word = lexicon_entry[0];  // note: word may be zero.
    int32 num_phones = static_cast<int32>(lexicon_entry.size()) - 2;
    std::vector<int32> phones;
    if (num_phones > 0)
      phones.reserve(num_phones - 1);
    // for each nonempty sequence of phones that is a strict prefix of the phones
    // in the lexicon entry (i.e. lexicon_entry [2 ... ]), add the word to the set
    // in viability_map_[phones].
    for (int32 n = 0; n < num_phones - 1; n++) {
      phones.push_back(lexicon_entry[n + 2]); // first phone is at position 2.
      // n+1 is the length of the sequence of phones
      viability_map_[phones].push_back(word);
    }
  }
  
  void WordAlignLatticeLexiconInfo::FinalizeViabilityMap() {
    for (ViabilityMap::iterator iter = viability_map_.begin();
         iter != viability_map_.end();
         ++iter) {
      std::vector<int32> &words = iter->second;
      SortAndUniq(&words);
      KALDI_ASSERT(words[0] >= 0 && "Error: negative labels in lexicon.");
    }
  }
  
  /// Update the map from a vector (orig-word-symbol phone1 phone2 ... ) to the
  /// new word-symbol.  The new word-symbol must always be nonzero; we'll replace
  /// it with kTemporaryEpsilon = -2, if it was zero.
  void WordAlignLatticeLexiconInfo::UpdateLexiconMap(
      const std::vector<int32> &lexicon_entry) {
    KALDI_ASSERT(lexicon_entry.size() >= 2);
    std::vector<int32> key;
    key.reserve(lexicon_entry.size() - 1);
    // add the original word:
    key.push_back(lexicon_entry[0]);
    // add the phones:
    key.insert(key.end(), lexicon_entry.begin() + 2, lexicon_entry.end());
    int32 new_word = lexicon_entry[1]; // This will typically be the same as
    // the original word at lexicon_entry[0] but is allowed to differ.
    if (new_word == 0) new_word = kTemporaryEpsilon; // replace 0's with -2;
    // we'll revert the change at the end.
    if (lexicon_map_.count(key) != 0) {
      if (lexicon_map_[key] == new_word)
        KALDI_WARN << "Duplicate entry in lexicon map for word " << lexicon_entry[0];
      else
        KALDI_ERR << "Duplicate entry in lexicon map for word " << lexicon_entry[0]
                  << " with inconsistent to-word.";
    }
    lexicon_map_[key] = new_word;
  
    if (lexicon_entry[0] != lexicon_entry[1]) {
      // Add reverse lexicon entry, this time with no 0 -> -2 mapping.
      key[0] = lexicon_entry[1];
      // Note: we ignore the situation where there are conflicting
      // entries in reverse_lexicon_map_, as we never actually inspect
      // the contents so it won't matter.
      reverse_lexicon_map_[key] = lexicon_entry[0];
    }
  }
  
  void WordAlignLatticeLexiconInfo::UpdateNumPhonesMap(
      const std::vector<int32> &lexicon_entry) {
    int32 num_phones = static_cast<int32>(lexicon_entry.size()) - 2;
    int32 word = lexicon_entry[0];
    if (num_phones_map_.count(word) == 0)
      num_phones_map_[word] = std::make_pair(num_phones, num_phones);
    else {
      std::pair<int32, int32> &pr = num_phones_map_[word];
      pr.first = std::min(pr.first, num_phones); // update min-num-phones
      pr.second = std::max(pr.second, num_phones); // update max-num-phones
      if (pr.first == 0 && word == 0)
        KALDI_ERR << "Zero word with empty pronunciation is not allowed.";
    }
  }
  
  /// Entry contains new-word-id phone1 phone2 ...
  /// equivalent to all but the 1st entry on a line of the input file.
  bool WordAlignLatticeLexiconInfo::IsValidEntry(const std::vector<int32> &entry) const {
    KALDI_ASSERT(!entry.empty());
    LexiconMap::const_iterator iter = lexicon_map_.find(entry);
    if (iter != lexicon_map_.end()) {
      int32 tgt_word = (iter->second == kTemporaryEpsilon ? 0 : iter->second);
      if (tgt_word == entry[0]) return true; // symmetric entry.
      // this means that that there would be an output-word with this
      // value, and this sequence of phones.
    }
    // For entries that were not symmetric:
    return (reverse_lexicon_map_.count(entry) != 0);
  }
  
  int32 WordAlignLatticeLexiconInfo::EquivalenceClassOf(int32 word) const {
    unordered_map<int32, int32>::const_iterator iter =
        equivalence_map_.find(word);
    if (iter == equivalence_map_.end()) return word; // not in map.
    else return iter->second;
  }
  
  void WordAlignLatticeLexiconInfo::UpdateEquivalenceMap(
      const std::vector<std::vector<int32> > &lexicon) {
    std::vector<std::pair<int32, int32> > equiv_pairs; // pairs of
    // (lower,higher) words that are equivalent.
    for (size_t i = 0; i < lexicon.size(); i++) {
      KALDI_ASSERT(lexicon[i].size() >= 2);
      int32 w1 = lexicon[i][0], w2 = lexicon[i][1];
      if (w1 == w2) continue; // They are the same; this provides no information
                              // about equivalence, since any word is equivalent
                              // to itself.
      if (w1 > w2) std::swap(w1, w2); // make sure w1 < w2.
      equiv_pairs.push_back(std::make_pair(w1, w2));
    }
    SortAndUniq(&equiv_pairs);
    equivalence_map_.clear();
    for (size_t i = 0; i < equiv_pairs.size(); i++) {
      int32 w1 = equiv_pairs[i].first, w2 = equiv_pairs[i].second,
          w1dash = EquivalenceClassOf(w1);
      equivalence_map_[w2] = w1dash;
    }
  }
  
  
  WordAlignLatticeLexiconInfo::WordAlignLatticeLexiconInfo(
      const std::vector<std::vector<int32> > &lexicon) {
    for (size_t i = 0; i < lexicon.size(); i++) {
      const std::vector<int32> &lexicon_entry = lexicon[i];
      KALDI_ASSERT(lexicon_entry.size() >= 2);
      UpdateViabilityMap(lexicon_entry);
      UpdateLexiconMap(lexicon_entry);
      UpdateNumPhonesMap(lexicon_entry);
    }
    FinalizeViabilityMap();
    UpdateEquivalenceMap(lexicon);
  }
  
  /// Testing code; map word symbols in the lattice "lat" using the equivalence-classes
  /// obtained from the lexicon, using the function EquivalenceClassOf in the lexicon_info
  /// object.
  static void MapSymbols(const WordAlignLatticeLexiconInfo &lexicon_info,
                         CompactLattice *lat) {
    typedef CompactLattice::StateId StateId;
    for (StateId s = 0; s < lat->NumStates(); s++) {
      for (fst::MutableArcIterator<CompactLattice> aiter(lat, s);
           !aiter.Done(); aiter.Next()) {
        CompactLatticeArc arc (aiter.Value());
        KALDI_ASSERT(arc.ilabel == arc.olabel);
        arc.ilabel = lexicon_info.EquivalenceClassOf(arc.ilabel);
        arc.olabel = arc.ilabel;
        aiter.SetValue(arc);
      }
    }
  }
  
  static bool TestWordAlignedLattice(const WordAlignLatticeLexiconInfo &lexicon_info,
                                     const TransitionModel &tmodel,
                                     CompactLattice clat,
                                     CompactLattice aligned_clat,
                                     bool allow_duplicate_paths) {
    int32 max_err = 5, num_err = 0;
    { // We test whether the forward-backward likelihoods differ; this is intended
      // to detect when we have duplicate paths in the aligned lattice, for some path
      // in the input lattice (e.g. due to epsilon-sequencing problems).
      Posterior post;
      Lattice lat, aligned_lat;
      ConvertLattice(clat, &lat);
      ConvertLattice(aligned_clat, &aligned_lat);
      TopSort(&lat);
      TopSort(&aligned_lat);
      BaseFloat like_before = LatticeForwardBackward(lat, &post),
          like_after = LatticeForwardBackward(aligned_lat, &post);
      if (fabs(like_before - like_after) >
          1.0e-04 * (fabs(like_before) + fabs(like_after))) {
        KALDI_WARN << "Forward-backward likelihoods differ in word-aligned lattice "
                   << "testing, " << like_before << " != " << like_after;
        if (!allow_duplicate_paths)
          num_err++;
      }
    }
  
    // Do a check on the arcs of the aligned lattice, that each arc corresponds
    // to an entry in the lexicon.
    for (CompactLattice::StateId s = 0; s < aligned_clat.NumStates(); s++) {
      for (fst::ArcIterator<CompactLattice> aiter(aligned_clat, s);
           !aiter.Done(); aiter.Next()) {
        const CompactLatticeArc &arc (aiter.Value());
        KALDI_ASSERT(arc.ilabel == arc.olabel);
        int32 word_id = arc.ilabel;
        const std::vector<int32> &tids = arc.weight.String();
        if (word_id == 0 && tids.empty()) continue; // We allow epsilon arcs.
  
        if (num_err < max_err)
          if (!IsPlausibleWord(lexicon_info, tmodel, word_id, tids))
            num_err++;
        // Note: IsPlausibleWord will warn if there is an error.
      }
      if (!aligned_clat.Final(s).String().empty()) {
        KALDI_WARN << "Aligned lattice has nonempty string on its final-prob.";
        return false;
      }
    }
  
    // Next we'll do an equivalence test.
    // First map symbols into equivalence classes, so that we don't wrongly fail
    // due to the capability of the framework to map words to other words.
    // (e.g. mapping <eps> on silence arcs to SIL).
  
    MapSymbols(lexicon_info, &clat);
    MapSymbols(lexicon_info, &aligned_clat);
  
    /// Check equivalence.
    int32 num_paths = 5, seed = Rand(), max_path_length = -1;
    BaseFloat delta = 0.2; // some lattices have large costs -> use large delta.
  
    FLAGS_v = GetVerboseLevel(); // set the OpenFst verbose level to the Kaldi
                                 // verbose level.
    if (!RandEquivalent(clat, aligned_clat, num_paths, delta, seed, max_path_length)) {
      KALDI_WARN << "Equivalence test failed during lattice alignment.";
      return false;
    }
    FLAGS_v = 0;
  
    return (num_err == 0);
  }
  
  
  
  // This is the wrapper function for users to call.
  bool WordAlignLatticeLexicon(const CompactLattice &lat,
                               const TransitionModel &tmodel,
                               const WordAlignLatticeLexiconInfo &lexicon_info,
                               const WordAlignLatticeLexiconOpts &opts,
                               CompactLattice *lat_out) {
    PhoneAlignLatticeOptions phone_align_opts;
    phone_align_opts.reorder = opts.reorder;
    phone_align_opts.replace_output_symbols = false;
    phone_align_opts.remove_epsilon = false;
  
    // Input Lattice should be deterministic and w/o epsilons.
    bool test = true;
    uint64 props = lat.Properties(fst::kIDeterministic|fst::kIEpsilons, test);
    if (props != fst::kIDeterministic) {
      KALDI_WARN << "[Lattice has input epsilons and/or is not input-deterministic "
                 << "(in Mohri sense)]-- i.e. lattice is not deterministic.  "
                 << "Word-alignment may be slow and-or blow up in memory.";
    }
  
    CompactLattice phone_aligned_lat;
    bool ans = PhoneAlignLattice(lat, tmodel, phone_align_opts,
                                 &phone_aligned_lat);
    // 'phone_aligned_lat' is no longer deterministic and contains epsilons.
  
    int32 max_states;
    if (opts.max_expand <= 0) {
      max_states = -1;
    } else {
      // The 1000 is a fixed offset to give it more wiggle room for very
      // small inputs.
      max_states = kNumStatesOffset + opts.max_expand * phone_aligned_lat.NumStates();
    }
  
    // If ans == false, we hope this is due to a forced-out lattice, and we try to
    // continue.
    LatticeLexiconWordAligner aligner(phone_aligned_lat, tmodel, lexicon_info,
                                      max_states, opts.partial_word_label, lat_out);
    // We'll let the calling code warn if this is false; it will know the utterance-id.
    ans = aligner.AlignLattice() && ans;
    if (ans && opts.test) { // We only test if it succeeded.
      if (!TestWordAlignedLattice(lexicon_info, tmodel, lat, *lat_out,
                                  opts.allow_duplicate_paths)) {
        KALDI_WARN << "Lattice failed test (activated because --test=true). "
                   << "Probable code error, please contact Kaldi maintainers.";
        ans = false;
      }
    }
    return ans;
  }
  
  bool ReadLexiconForWordAlign (std::istream &is,
                                std::vector<std::vector<int32> > *lexicon) {
    lexicon->clear();
    std::string line;
    while (std::getline(is, line)) {
      std::vector<int32> this_entry;
      if (!SplitStringToIntegers(line, " \t\r", false, &this_entry) ||
          this_entry.size() < 2) {
        KALDI_WARN << "Lexicon line '" << line  << "' is invalid";
        return false;
      }
      lexicon->push_back(this_entry);
    }
    return (!lexicon->empty());
  }
  
  }  // namespace kaldi