Blame view

src/lat/word-align-lattice.cc 38.3 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
  // lat/word-align-lattice.cc
  
  // Copyright 2011-2012  Microsoft Corporation  Johns Hopkins University (Author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "lat/word-align-lattice.h"
  #include "hmm/transition-model.h"
  #include "util/stl-utils.h"
  
  namespace kaldi {
  
  class LatticeWordAligner {
   public:
    typedef CompactLatticeArc::StateId StateId;
    typedef CompactLatticeArc::Label Label;
  
    class ComputationState { /// The state of the computation in which,
      /// along a single path in the lattice, we work out the word
      /// boundaries and output aligned arcs.
     public:
  
      /// Advance the computation state by adding the symbols and weights
      /// from this arc.  We'll put the weight on the output arc; this helps
      /// keep the state-space smaller.
      void Advance(const CompactLatticeArc &arc, LatticeWeight *weight) {
        const std::vector<int32> &string = arc.weight.String();
        transition_ids_.insert(transition_ids_.end(),
                               string.begin(), string.end());
        if (arc.ilabel != 0) // note: arc.ilabel==arc.olabel (acceptor)
          word_labels_.push_back(arc.ilabel);
        *weight = Times(weight_, arc.weight.Weight());
        weight_ = LatticeWeight::One();
      }
  
      /// If it can output a whole word, it will do so, will put it in arc_out,
      /// and return true; else it will return false.  If it detects an error
      /// condition and *error = false, it will set *error to true and print
      /// a warning.  In this case it may or may not [output an arc and return true],
      /// depending on what we think is most likely the right thing to do.  Of
      /// course once *error is set, something has gone wrong so don't trust
      /// the output too fully.
      /// Note: the "next_state" of the arc will not be set, you have to do that
      /// yourself.
      bool OutputArc(const WordBoundaryInfo &info,
                     const TransitionModel &tmodel,
                     CompactLatticeArc *arc_out,
                     bool *error) {
        // order of this ||-expression doesn't matter for
        // function behavior, only for efficiency, since the
        // cases are disjoint.
        return OutputNormalWordArc(info, tmodel, arc_out, error) ||
            OutputSilenceArc(info, tmodel, arc_out, error) ||
            OutputOnePhoneWordArc(info, tmodel, arc_out, error);
      }
  
      bool OutputSilenceArc(const WordBoundaryInfo &info,
                            const TransitionModel &tmodel,
                            CompactLatticeArc *arc_out,
                            bool *error);
      bool OutputOnePhoneWordArc(const WordBoundaryInfo &info,
                                 const TransitionModel &tmodel,
                                 CompactLatticeArc *arc_out,
                                 bool *error);
      bool OutputNormalWordArc(const WordBoundaryInfo &info,
                               const TransitionModel &tmodel,
                               CompactLatticeArc *arc_out,
                               bool *error);
  
      bool IsEmpty() { return (transition_ids_.empty() && word_labels_.empty()); }
  
      /// FinalWeight() will return "weight" if both transition_ids
      /// and word_labels are empty, otherwise it will return
      /// Weight::Zero().
      LatticeWeight FinalWeight() { return (IsEmpty() ? weight_ : LatticeWeight::Zero()); }
  
      /// This function may be called when you reach the end of
      /// the lattice and this structure hasn't voluntarily
      /// output words using "OutputArc".  If IsEmpty() == false,
      /// then you can call this function and it will output
      /// an arc.  The only
      /// non-error state in which this happens, is when a word
      /// (or silence) has ended, but we don't know that it's
      /// ended because we haven't seen the first transition-id
      /// from the next word.  Otherwise (error state), the output
      /// will consist of partial words, and this will only
      /// happen for lattices that were somehow broken, i.e.
      /// had not reached the final state.
      void OutputArcForce(const WordBoundaryInfo &info,
                          const TransitionModel &tmodel,
                          CompactLatticeArc *arc_out,
                          bool *error);
  
      size_t Hash() const {
        VectorHasher<int32> vh;
        return vh(transition_ids_) + 90647 * vh(word_labels_);
        // 90647 is an arbitrary largish prime number.
        // We don't bother including the weight in the hash--
        // we don't really expect duplicates with the same vectors
        // but different weights, and anyway, this is only an
        // efficiency issue.
      }
  
      // Just need an arbitrary complete order.
      bool operator == (const ComputationState &other) const {
        return (transition_ids_ == other.transition_ids_
                && word_labels_ == other.word_labels_
                && weight_ == other.weight_);
      }
  
      ComputationState(): weight_(LatticeWeight::One()) { } // initial state.
      ComputationState(const ComputationState &other):
          transition_ids_(other.transition_ids_), word_labels_(other.word_labels_),
          weight_(other.weight_) { }
     private:
      std::vector<int32> transition_ids_;
      std::vector<int32> word_labels_;
      LatticeWeight weight_; // contains two floats.
    };
  
  
    struct Tuple {
      Tuple(StateId input_state, ComputationState comp_state):
          input_state(input_state), comp_state(comp_state) {}
      StateId input_state;
      ComputationState comp_state;
    };
  
    struct TupleHash {
      size_t operator() (const Tuple &state) const {
        return state.input_state + 102763 * state.comp_state.Hash();
        // 102763 is just an arbitrary prime number
      }
    };
    struct TupleEqual {
      bool operator () (const Tuple &state1, const Tuple &state2) const {
        // treat this like operator ==
        return (state1.input_state == state2.input_state
                && state1.comp_state == state2.comp_state);
      }
    };
  
    typedef unordered_map<Tuple, StateId, TupleHash, TupleEqual> MapType;
  
    StateId GetStateForTuple(const Tuple &tuple, bool add_to_queue) {
      MapType::iterator iter = map_.find(tuple);
      if (iter == map_.end()) { // not in map.
        StateId output_state = lat_out_->AddState();
        map_[tuple] = output_state;
        if (add_to_queue)
          queue_.push_back(std::make_pair(tuple, output_state));
        return output_state;
      } else {
        return iter->second;
      }
    }
  
    void ProcessFinal(Tuple tuple, StateId output_state) {
      // ProcessFinal is only called if the input_state has
      // final-prob of One().  [else it should be zero.  This
      // is because we called CreateSuperFinal().]
  
      if (tuple.comp_state.IsEmpty()) { // computation state doesn't have
        // anything pending.
        std::vector<int32> empty_vec;
        CompactLatticeWeight cw(tuple.comp_state.FinalWeight(), empty_vec);
        lat_out_->SetFinal(output_state, Plus(lat_out_->Final(output_state), cw));
      } else {
        // computation state has something pending, i.e. input or
        // output symbols that need to be flushed out.  Note: OutputArc() would
        // have returned false or we wouldn't have been called, so we have to
        // force it out.
        CompactLatticeArc lat_arc;
        tuple.comp_state.OutputArcForce(info_, tmodel_, &lat_arc, &error_);
        // True in the next line means add it to the queue.
        lat_arc.nextstate = GetStateForTuple(tuple, true);
        // The final-prob stuff will get called again from ProcessQueueElement().
        // Note: because we did CreateSuperFinal(), this final-state on the input
        // lattice will have no output arcs (and unit final-prob), so there will be
        // no complications with processing the arcs from this state (there won't
        // be any).
        KALDI_ASSERT(output_state != lat_arc.nextstate);
        lat_out_->AddArc(output_state, lat_arc);
      }
    }
  
  
    void ProcessQueueElement() {
      KALDI_ASSERT(!queue_.empty());
      Tuple tuple = queue_.back().first;
      StateId output_state = queue_.back().second;
      queue_.pop_back();
  
      // First thing is-- we see whether the computation-state has something
      // pending that it wants to output.  In this case we don't do
      // anything further.  This is a chosen behavior similar to the
      // epsilon-sequencing rules encoded by the filters in
      // composition.
      CompactLatticeArc lat_arc;
      if (tuple.comp_state.OutputArc(info_, tmodel_, &lat_arc, &error_)) {
        // note: this function changes the tuple (when it returns true).
        lat_arc.nextstate = GetStateForTuple(tuple, true); // true == add to queue,
        // if not already present.
        KALDI_ASSERT(output_state != lat_arc.nextstate);
        lat_out_->AddArc(output_state, lat_arc);
      } else {
        // when there's nothing to output, we'll process arcs from the input-state.
        // note: it would in a sense be valid to do both (i.e. process the stuff
        // above, and also these), but this is a bit like the epsilon-sequencing
        // stuff in composition: we avoid duplicate arcs by doing it this way.
  
        if (lat_.Final(tuple.input_state) != CompactLatticeWeight::Zero()) {
          KALDI_ASSERT(lat_.Final(tuple.input_state) == CompactLatticeWeight::One());
          // ... since we did CreateSuperFinal.
          ProcessFinal(tuple, output_state);
        }
        // Now process the arcs.  Note: final-state shouldn't have any arcs.
        for (fst::ArcIterator<CompactLattice> aiter(lat_, tuple.input_state);
            !aiter.Done(); aiter.Next()) {
          const CompactLatticeArc &arc = aiter.Value();
          Tuple next_tuple(tuple);
          LatticeWeight weight;
          next_tuple.comp_state.Advance(arc, &weight);
          next_tuple.input_state = arc.nextstate;
          StateId next_output_state = GetStateForTuple(next_tuple, true); // true == add to queue,
          // if not already present.
          // We add an epsilon arc here (as the input and output happens
          // separately)... the epsilons will get removed later.
          KALDI_ASSERT(next_output_state != output_state);
          lat_out_->AddArc(output_state,
                           CompactLatticeArc(0, 0,
                               CompactLatticeWeight(weight, std::vector<int32>()),
                               next_output_state));
        }
      }
    }
  
    LatticeWordAligner(const CompactLattice &lat,
                       const TransitionModel &tmodel,
                       const WordBoundaryInfo &info,
                       int32 max_states,
                       CompactLattice *lat_out):
        lat_(lat), tmodel_(tmodel), info_in_(info), info_(info),
        max_states_(max_states), lat_out_(lat_out),
        error_(false) {
      bool test = true;
      uint64 props = lat_.Properties(fst::kIDeterministic|fst::kIEpsilons, test);
      if (props != fst::kIDeterministic) {
        KALDI_WARN << "[Lattice has input epsilons and/or is not input-deterministic "
                   << "(in Mohri sense)]-- i.e. lattice is not deterministic.  "
                   << "Word-alignment may be slow and-or blow up in memory.";
      }
      fst::CreateSuperFinal(&lat_); // Creates a super-final state, so the
      // only final-probs are One().
  
      // Inside this class, we don't want to use zero for the silence
      // or partial-word labels, as this will interfere with the RmEpsilon
      // stage, where we don't want the arcs corresponding to silence or
      // partial words to be removed-- only the arcs with nothing at all
      // on them.
      if (info_.partial_word_label == 0 || info_.silence_label == 0) {
        int32 unused_label = 1 + HighestNumberedOutputSymbol(lat);
        if (info_.partial_word_label >= unused_label)
          unused_label = info_.partial_word_label + 1;
        if (info_.silence_label >= unused_label)
          unused_label = info_.silence_label + 1;
        KALDI_ASSERT(unused_label > 0);
        if (info_.partial_word_label == 0)
          info_.partial_word_label = unused_label++;
        if (info_.silence_label == 0)
          info_.silence_label = unused_label;
      }
    }
  
    // Removes epsilons; also removes unreachable states...
    // not sure if these would exist if original was connected.
    // This also replaces the temporary symbols for the silence
    // and partial-words, with epsilons, if we wanted epsilons.
    void RemoveEpsilonsFromLattice() {
      // Remove epsilon arcs from output lattice.
      RmEpsilon(lat_out_, true); // true = connect.
      std::vector<int32> syms_to_remove;
      if (info_in_.partial_word_label == 0)
        syms_to_remove.push_back(info_.partial_word_label);
      if (info_in_.silence_label == 0)
        syms_to_remove.push_back(info_.silence_label);
      if (!syms_to_remove.empty()) {
        RemoveSomeInputSymbols(syms_to_remove, lat_out_);
        Project(lat_out_, fst::PROJECT_INPUT);
      }
    }
  
    bool AlignLattice() {
      lat_out_->DeleteStates();
      if (lat_.Start() == fst::kNoStateId) {
        KALDI_WARN << "Trying to word-align empty lattice.";
        return false;
      }
      ComputationState initial_comp_state;
      Tuple initial_tuple(lat_.Start(), initial_comp_state);
      StateId start_state = GetStateForTuple(initial_tuple, true); // True = add this to queue.
      lat_out_->SetStart(start_state);
  
      while (!queue_.empty()) {
        if (max_states_ > 0 && lat_out_->NumStates() > max_states_) {
          KALDI_WARN << "Number of states in lattice exceeded max-states of "
                     << max_states_ << ", original lattice had "
                     << lat_.NumStates() << " states.  Returning what we have.";
          RemoveEpsilonsFromLattice();
          return false;
        }
        ProcessQueueElement();
      }
  
      RemoveEpsilonsFromLattice();
  
      return !error_;
    }
  
    CompactLattice lat_;
    const TransitionModel &tmodel_;
    const WordBoundaryInfo &info_in_;
    WordBoundaryInfo info_;
    int32 max_states_;
    CompactLattice *lat_out_;
  
    std::vector<std::pair<Tuple, StateId> > queue_;
  
  
  
    MapType map_; // map from tuples to StateId.
    bool error_;
  
  };
  
  bool LatticeWordAligner::ComputationState::OutputSilenceArc(
      const WordBoundaryInfo &info, const TransitionModel &tmodel,
      CompactLatticeArc *arc_out,  bool *error) {
    if (transition_ids_.empty()) return false;
    int32 phone = tmodel.TransitionIdToPhone(transition_ids_[0]);
    if (info.TypeOfPhone(phone) != WordBoundaryInfo::kNonWordPhone) return false;
  
    // we assume the start of transition_ids_ is the start of the phone [silence];
    // this is a precondition.
    size_t len = transition_ids_.size(), i;
    // Keep going till we reach a "final" transition-id; note, if
    // reorder==true, we have to go a bit further after this.
    for (i = 0; i < len; i++) {
      int32 tid = transition_ids_[i];
      int32 this_phone = tmodel.TransitionIdToPhone(tid);
      if (this_phone != phone && ! *error) { // error condition: should have reached final transition-id first.
        *error = true;
        KALDI_WARN << "Phone changed before final transition-id found "
            "[broken lattice or mismatched model or wrong --reorder option?]";
      }
      if (tmodel.IsFinal(tid))
        break;
    }
    if (i == len) return false; // fell off loop.
    i++; // go past the one for which IsFinal returned true.
    if (info.reorder) // we have to consume the following self-loop transition-ids.
      while (i < len && tmodel.IsSelfLoop(transition_ids_[i])) i++;
    if (i == len) return false; // we don't know if it ends here... so can't output arc.
  
    if (tmodel.TransitionIdToPhone(transition_ids_[i-1]) != phone
        && ! *error) { // another check.
      KALDI_WARN << "Phone changed unexpectedly in lattice "
          "[broken lattice or mismatched model?]";
    }
    // interpret i as the number of transition-ids to consume.
    std::vector<int32> tids_out(transition_ids_.begin(), transition_ids_.begin()+i);
  
    // consumed transition ids from our internal state.
    *arc_out = CompactLatticeArc(info.silence_label, info.silence_label,
                                 CompactLatticeWeight(weight_, tids_out), fst::kNoStateId);
    transition_ids_.erase(transition_ids_.begin(), transition_ids_.begin()+i); // delete these
    weight_ = LatticeWeight::One(); // we just output the weight.
    return true;
  }
  
  
  bool LatticeWordAligner::ComputationState::OutputOnePhoneWordArc(
      const WordBoundaryInfo &info, const TransitionModel &tmodel,
      CompactLatticeArc *arc_out,  bool *error) {
    if (transition_ids_.empty()) return false;
    if (word_labels_.empty()) return false;
    int32 phone = tmodel.TransitionIdToPhone(transition_ids_[0]);
    if (info.TypeOfPhone(phone) != WordBoundaryInfo::kWordBeginAndEndPhone)
      return false;
    // we assume the start of transition_ids_ is the start of the phone.
    // this is a precondition.
    size_t len = transition_ids_.size(), i;
    for (i = 0; i < len; i++) {
      int32 tid = transition_ids_[i];
      int32 this_phone = tmodel.TransitionIdToPhone(tid);
      if (this_phone != phone && ! *error) { // error condition: should have reached final transition-id first.
        KALDI_WARN << "Phone changed before final transition-id found "
            "[broken lattice or mismatched model or wrong --reorder option?]";
        // just continue, ignoring this-- we'll probably output something...
      }
      if (tmodel.IsFinal(tid))
        break;
    }
    if (i == len) return false; // fell off loop.
    i++; // go past the one for which IsFinal returned true.
    if (info.reorder) // we have to consume the following self-loop transition-ids.
      while (i < len && tmodel.IsSelfLoop(transition_ids_[i])) i++;
    if (i == len) return false; // we don't know if it ends here... so can't output arc.
  
    if (tmodel.TransitionIdToPhone(transition_ids_[i-1]) != phone
        && ! *error) { // another check.
      KALDI_WARN << "Phone changed unexpectedly in lattice "
          "[broken lattice or mismatched model?]";
      *error = true;
    }
  
    // interpret i as the number of transition-ids to consume.
    std::vector<int32> tids_out(transition_ids_.begin(),
                                transition_ids_.begin() + i);
  
    // consumed transition ids from our internal state.
    int32 word = word_labels_[0];
    *arc_out = CompactLatticeArc(word, word,
                                 CompactLatticeWeight(weight_, tids_out), fst::kNoStateId);
    transition_ids_.erase(transition_ids_.begin(),
                          transition_ids_.begin() + i); // delete these
    // Remove the word that we just output.
    word_labels_.erase(word_labels_.begin(), word_labels_.begin() + 1);
    weight_ = LatticeWeight::One(); // we just output the weight.
    return true;
  }
  
  
  /// This function tries to see if it can output a normal word arc--
  /// one with at least two phones in it.
  bool LatticeWordAligner::ComputationState::OutputNormalWordArc(
      const WordBoundaryInfo &info, const TransitionModel &tmodel,
      CompactLatticeArc *arc_out,  bool *error) {
    if (transition_ids_.empty()) return false;
    if (word_labels_.empty()) return false;
    int32 begin_phone = tmodel.TransitionIdToPhone(transition_ids_[0]);
    if (info.TypeOfPhone(begin_phone) != WordBoundaryInfo::kWordBeginPhone)
      return false;
    // we assume the start of transition_ids_ is the start of the phone.
    // this is a precondition.
    size_t len = transition_ids_.size(), i;
  
    // Eat up the transition-ids of this word-begin phone until we get to the
    // "final" transition-id.  [there may be self-loops following this though,
    // if reorder==true]
    for (i = 0; i < len && !tmodel.IsFinal(transition_ids_[i]); i++);
    if (i == len) return false;
    i++; // Skip over this final-transition.
    if (info.reorder) // Skip over any reordered self-loops for this final-transition
      for (; i < len && tmodel.IsSelfLoop(transition_ids_[i]); i++);
    if (i == len) return false;
    if (tmodel.TransitionIdToPhone(transition_ids_[i-1]) != begin_phone
        && ! *error) { // another check.
      KALDI_WARN << "Phone changed unexpectedly in lattice "
          "[broken lattice or mismatched model?]";
      *error = true;
    }
    // Now keep going till we hit a word-ending phone.
    // Note: we don't expect anything except word-internal phones
    // here, but we'll just print a warning if we get something
    // else.
    for (; i < len; i++) {
      int32 this_phone = tmodel.TransitionIdToPhone(transition_ids_[i]);
      if (info.TypeOfPhone(this_phone) == WordBoundaryInfo::kWordEndPhone)
        break;
      if (info.TypeOfPhone(this_phone) != WordBoundaryInfo::kWordInternalPhone
          && !*error) {
        KALDI_WARN << "Unexpected phone " << this_phone
                   << " found inside a word.";
        *error = true;
      }
    }
    if (i == len) return false;
  
    // OK, we hit a word-ending phone.  Continue till we get to
    // a "final-transition".
  
    // this variable just used for checks.
    int32 final_phone = tmodel.TransitionIdToPhone(transition_ids_[i]);
    for (; i < len; i++) {
      int32 this_phone = tmodel.TransitionIdToPhone(transition_ids_[i]);
      if (this_phone != final_phone && ! *error) {
        *error = true;
        KALDI_WARN << "Phone changed before final transition-id found "
            "[broken lattice or mismatched model or wrong --reorder option?]";
      }
      if (tmodel.IsFinal(transition_ids_[i])) break;
    }
    if (i == len) return false;
    i++;
    // We got to the final-transition of the final phone;
    // if reorder==true, continue eating up the self-loop.
    if (info.reorder == true)
      while (i < len && tmodel.IsSelfLoop(transition_ids_[i])) i++;
    if (i == len) return false;
    if (tmodel.TransitionIdToPhone(transition_ids_[i-1]) != final_phone
        && ! *error) {
      *error = true;
      KALDI_WARN << "Phone changed while following final self-loop "
          "[broken lattice or mismatched model or wrong --reorder option?]";
    }
  
    // OK, we're ready to output the word.
    // Interpret i as the number of transition-ids to consume.
    std::vector<int32> tids_out(transition_ids_.begin(),
                                transition_ids_.begin() + i);
  
    // consumed transition ids from our internal state.
    int32 word = word_labels_[0];
    *arc_out = CompactLatticeArc(word, word,
                                 CompactLatticeWeight(weight_, tids_out),
                                 fst::kNoStateId);
    transition_ids_.erase(transition_ids_.begin(),
                          transition_ids_.begin() + i); // delete these
    // Remove the word that we just output.
    word_labels_.erase(word_labels_.begin(),
                       word_labels_.begin() + 1);
    weight_ = LatticeWeight::One(); // we just output the weight.
    return true;
  }
  
  // Returns true if this vector of transition-ids could be a valid
  // word.  Note: the checks are not 100% exhaustive.
  static bool IsPlausibleWord(const WordBoundaryInfo &info,
                              const TransitionModel &tmodel,
                              const std::vector<int32> &transition_ids) {
    if (transition_ids.empty()) return false;
    int32 first_phone = tmodel.TransitionIdToPhone(transition_ids.front()),
        last_phone = tmodel.TransitionIdToPhone(transition_ids.back());
    if ( (info.TypeOfPhone(first_phone) == WordBoundaryInfo::kWordBeginAndEndPhone
          && first_phone == last_phone)
         ||
         (info.TypeOfPhone(first_phone) == WordBoundaryInfo::kWordBeginPhone &&
          info.TypeOfPhone(last_phone) == WordBoundaryInfo::kWordEndPhone) ) {
      if (! info.reorder) {
        return (tmodel.IsFinal(transition_ids.back()));
      } else {
        int32 i = transition_ids.size() - 1;
        while (i > 0 && tmodel.IsSelfLoop(transition_ids[i])) i--;
        return tmodel.IsFinal(transition_ids[i]);
      }
    } else return false;
  }
  
  
  void LatticeWordAligner::ComputationState::OutputArcForce(
      const WordBoundaryInfo &info, const TransitionModel &tmodel,
      CompactLatticeArc *arc_out,  bool *error) {
  
    KALDI_ASSERT(!IsEmpty());
    if (!word_labels_.empty()
        && !transition_ids_.empty()) { // We have at least one word to
      // output, and some transition-ids.  We assume that the normal OutputArc was called
      // and failed, so this means we didn't see the end of that
      // word.
      int32 word = word_labels_[0];
      if (! *error && !IsPlausibleWord(info, tmodel, transition_ids_)) {
        *error = true;
        KALDI_WARN << "Invalid word at end of lattice [partial lattice, forced out?]";
      }
      CompactLatticeWeight cw(weight_, transition_ids_);
      *arc_out = CompactLatticeArc(word, word, cw, fst::kNoStateId);
      weight_ = LatticeWeight::One();
      transition_ids_.clear();
      word_labels_.erase(word_labels_.begin(), word_labels_.begin()+1);
    } else if (!word_labels_.empty() && transition_ids_.empty()) {
      // We won't create arcs with these word labels on, as most likely
      // this will cause errors down the road.  This is an error
      // condition anyway, in some sense.
      if (! *error) {
        *error = true;
        KALDI_WARN << "Discarding word-ids at the end of a sentence, "
            "that don't have alignments.";
      }
      CompactLatticeWeight cw(weight_, transition_ids_);
      // This creates an epsilon arc with a weight on it, but
      // no transition-ids since the vector is empty.
      // The word labels are discarded.
      *arc_out = CompactLatticeArc(0, 0, cw, fst::kNoStateId);
      weight_ = LatticeWeight::One();
      word_labels_.clear();
    } else if (!transition_ids_.empty() && word_labels_.empty()) {
      // Transition-ids but no word label-- either silence or partial word.
      int32 first_phone = tmodel.TransitionIdToPhone(transition_ids_[0]);
      if (info.TypeOfPhone(first_phone) == WordBoundaryInfo::kNonWordPhone) {
        // first phone is silence...
        if (first_phone != tmodel.TransitionIdToPhone(transition_ids_.back())
            && ! *error) {
          *error = true;
          // Phone changed-- this is a code error, because the regular OutputArc
          // should have output an arc (a silence arc) if that phone finished.
          // So we make it fatal.
          KALDI_ERR << "Broken silence arc at end of utterance (the phone "
              "changed); code error";
        }
        if (!*error) { // Check that it ends at the end state of silence; error otherwise.
          int32 i = transition_ids_.size() - 1;
          if (info.reorder)
            while (tmodel.IsSelfLoop(transition_ids_[i]) && i > 0)
              i--;
          if (!tmodel.IsFinal(transition_ids_[i])) {
            *error = true;
            KALDI_WARN << "Broken silence arc at end of utterance (does not "
                "reach end of silence)";
          }
        }
        CompactLatticeWeight cw(weight_, transition_ids_);
        *arc_out = CompactLatticeArc(info.silence_label, info.silence_label,
                                     cw, fst::kNoStateId);
      } else {
        // Not silence phone -- treat as partial word (with no word label).
        // This is in itself an error condition, i.e. the lattice was maybe
        // forced out.
        if (! *error) {
          *error = true;
          KALDI_WARN << "Partial word detected at end of utterance";
        }
        CompactLatticeWeight cw(weight_, transition_ids_);
        *arc_out = CompactLatticeArc(info.partial_word_label, info.partial_word_label,
                                     cw, fst::kNoStateId);
      }
      transition_ids_.clear();
      weight_ = LatticeWeight::One();
    } else {
      KALDI_ERR << "Code error, word-aligning lattice"; // this shouldn't
      // be able to happen; we don't call this function of they're both empty.
    }
  }
  
  // This code will eventually be removed.
  void WordBoundaryInfo::SetOptions(const std::string int_list, PhoneType phone_type) {
    KALDI_ASSERT(!int_list.empty() && phone_type != kNoPhone);
    std::vector<int32> phone_list;
    if (!kaldi::SplitStringToIntegers(int_list, ":",
                                      false,
                                      &phone_list)
        || phone_list.empty())
      KALDI_ERR << "Invalid argument to --*-phones option: " << int_list;
    for (size_t i= 0; i < phone_list.size(); i++) {
      if (phone_to_type.size() <= phone_list[i])
        phone_to_type.resize(phone_list[i]+1, kNoPhone);
      if (phone_to_type[phone_list[i]] != kNoPhone)
        KALDI_ERR << "Phone " << phone_list[i] << "was given two incompatible "
            "assignments.";
      phone_to_type[phone_list[i]] = phone_type;
    }
  }
  
  // This initializer will be deleted eventually.
  WordBoundaryInfo::WordBoundaryInfo(const WordBoundaryInfoOpts &opts) {
    SetOptions(opts.wbegin_phones, kWordBeginPhone);
    SetOptions(opts.wend_phones, kWordEndPhone);
    SetOptions(opts.wbegin_and_end_phones, kWordBeginAndEndPhone);
    SetOptions(opts.winternal_phones, kWordInternalPhone);
    SetOptions(opts.silence_phones, (opts.silence_has_olabels ?
                                     kWordBeginAndEndPhone : kNonWordPhone));
    reorder = opts.reorder;
    silence_label = opts.silence_label;
    partial_word_label = opts.partial_word_label;
  }
  
  WordBoundaryInfo::WordBoundaryInfo(const WordBoundaryInfoNewOpts &opts) {
    reorder = opts.reorder;
    silence_label = opts.silence_label;
    partial_word_label = opts.partial_word_label;
  }
  
  WordBoundaryInfo::WordBoundaryInfo(const WordBoundaryInfoNewOpts &opts,
                                     std::string word_boundary_file) {
    reorder = opts.reorder;
    silence_label = opts.silence_label;
    partial_word_label = opts.partial_word_label;
    bool binary_in;
    Input ki(word_boundary_file, &binary_in);
    KALDI_ASSERT(!binary_in && "Not expecting binary word-boundary file.");
    Init(ki.Stream());
  }
  
  void WordBoundaryInfo::Init(std::istream &stream) {
    std::string line;
    while (std::getline(stream, line)) {
      std::vector<std::string> split_line;
      SplitStringToVector(line, " \t\r", true, &split_line);// split the line by space or tab
      int32 p = 0;
      if (split_line.size() != 2 ||
          !ConvertStringToInteger(split_line[0], &p))
        KALDI_ERR << "Invalid line in word-boundary file: " << line;
      KALDI_ASSERT(p > 0);
      if (phone_to_type.size() <= static_cast<size_t>(p))
        phone_to_type.resize(p+1, kNoPhone);
      std::string t = split_line[1];
      if (t == "nonword") phone_to_type[p] = kNonWordPhone;
      else if (t == "begin") phone_to_type[p] = kWordBeginPhone;
      else if (t == "singleton") phone_to_type[p] = kWordBeginAndEndPhone;
      else if (t == "end") phone_to_type[p] = kWordEndPhone;
      else if (t == "internal") phone_to_type[p] = kWordInternalPhone;
      else
        KALDI_ERR << "Invalid line in word-boundary file: " << line;
    }
    if (phone_to_type.empty())
      KALDI_ERR << "Empty word-boundary file";
  }
  
  bool WordAlignLattice(const CompactLattice &lat,
                        const TransitionModel &tmodel,
                        const WordBoundaryInfo &info,
                        int32 max_states,
                        CompactLattice *lat_out) {
    LatticeWordAligner aligner(lat, tmodel, info, max_states, lat_out);
    return aligner.AlignLattice();
  }
  
  
  
  class WordAlignedLatticeTester {
   public:
    WordAlignedLatticeTester(const CompactLattice &lat,
                             const TransitionModel &tmodel,
                             const WordBoundaryInfo &info,
                             const CompactLattice &aligned_lat):
        lat_(lat), tmodel_(tmodel), info_(info), aligned_lat_(aligned_lat) { }
  
    void Test() {
      // First test that each aligned arc is valid.
      typedef CompactLattice::StateId StateId ;
      for (StateId s = 0; s < aligned_lat_.NumStates(); s++) {
        for (fst::ArcIterator<CompactLattice> iter(aligned_lat_, s);
             !iter.Done();
             iter.Next()) {
          TestArc(iter.Value());
        }
        if (aligned_lat_.Final(s) != CompactLatticeWeight::Zero()) {
          TestFinal(aligned_lat_.Final(s));
        }
      }
      TestEquivalent();
    }
   private:
    void TestArc(const CompactLatticeArc &arc) {
      if (! (TestArcSilence(arc) || TestArcNormalWord(arc) || TestArcOnePhoneWord(arc)
             || TestArcEmpty(arc)))
        KALDI_ERR << "Invalid arc in aligned CompactLattice: "
                  << arc.ilabel << " " << arc.olabel << " " << arc.nextstate
                  << " " << arc.weight;
    }
    bool TestArcEmpty(const CompactLatticeArc &arc) {
      if (arc.ilabel != 0) return false; // Check there is no label.  Note, ilabel==olabel.
      const std::vector<int32> &tids = arc.weight.String();
      return tids.empty();
    }
    bool TestArcSilence(const CompactLatticeArc &arc) {
      // This only applies when silence doesn't have word labels.
      if (arc.ilabel !=  info_.silence_label) return false; // Check the label is
      // the silence label. Note, ilabel==olabel.
      const std::vector<int32> &tids = arc.weight.String();
      if (tids.empty()) return false;
      int32 first_phone = tmodel_.TransitionIdToPhone(tids.front());
      if (info_.TypeOfPhone(first_phone) != WordBoundaryInfo::kNonWordPhone)
        return false;
      for (size_t i = 0; i < tids.size(); i++)
        if (tmodel_.TransitionIdToPhone(tids[i]) != first_phone) return false;
  
      if (!info_.reorder) return tmodel_.IsFinal(tids.back());
      else {
        for (size_t i = 0; i < tids.size(); i++) {
          if (tmodel_.IsFinal(tids[i])) { // got the "final" transition, which is
            // reordered to actually not be final.  Make sure that all the
            // rest of the transition ids are the self-loop of that same
            // transition-state.
            for (size_t j = i+1; j < tids.size(); j++) {
              if (!(tmodel_.TransitionIdToTransitionState(tids[j])
                    == tmodel_.TransitionIdToTransitionState(tids[i]))) return false;
            }
            return true;
          }
        }
        return false; // fell off loop.  No final-state present.
      }
    }
  
    bool TestArcOnePhoneWord(const CompactLatticeArc &arc) {
      if (arc.ilabel == 0) return false; // Check there's a label.  Note, ilabel==olabel.
      const std::vector<int32> &tids = arc.weight.String();
      if (tids.empty()) return false;
      int32 first_phone = tmodel_.TransitionIdToPhone(tids.front());
      if (info_.TypeOfPhone(first_phone) !=
          WordBoundaryInfo::kWordBeginAndEndPhone) return false;
      for (size_t i = 0; i < tids.size(); i++)
        if (tmodel_.TransitionIdToPhone(tids[i]) != first_phone) return false;
  
      if (!info_.reorder) return tmodel_.IsFinal(tids.back());
      else {
        for (size_t i = 0; i < tids.size(); i++) {
          if (tmodel_.IsFinal(tids[i])) { // got the "final" transition, which is
            // reordered to actually not be final.  Make sure that all the
            // rest of the transition ids are the self-loop of that same
            // transition-state.
            for (size_t j = i+1; j < tids.size(); j++) {
              if (tmodel_.TransitionIdToTransitionState(tids[j])
                  != tmodel_.TransitionIdToTransitionState(tids[i])) return false;
            }
            return true;
          }
        }
        return false; // fell off loop.  No final-state present.
      }
    }
  
    bool TestArcNormalWord(const CompactLatticeArc &arc) {
      if (arc.ilabel == 0) return false; // Check there's a label.  Note, ilabel==olabel.
      const std::vector<int32> &tids = arc.weight.String();
      if (tids.empty()) return false;
      int32 first_phone = tmodel_.TransitionIdToPhone(tids.front());
      if (info_.TypeOfPhone(first_phone) != WordBoundaryInfo::kWordBeginPhone)
        return false;
      size_t i;
      { // first phone.
        int num_final = 0;
        for (i = 0; i < tids.size(); i++) {
          if (tmodel_.TransitionIdToPhone(tids[i]) != first_phone) break;
          if (tmodel_.IsFinal(tids[i])) num_final++;
        }
        if (num_final != 1)
          return false; // Something went wrong-- perhaps we
        // got two beginning phones in a row.
      }
      { // middle phones.  Skip over them.
        while (i < tids.size() &&
               info_.TypeOfPhone(tmodel_.TransitionIdToPhone(tids[i]))
               == WordBoundaryInfo::kWordInternalPhone)
          i++;
      }
      if (i == tids.size()) return false;
      int32 final_phone = tmodel_.TransitionIdToPhone(tids[i]);
      if (info_.TypeOfPhone(final_phone) != WordBoundaryInfo::kWordEndPhone)
        return false; // not word-ending.
      for (size_t j = i; j < tids.size(); j++) // make sure only this final phone till end.
        if (tmodel_.TransitionIdToPhone(tids[j]) != final_phone)
          return false; // Other phones after final phone.
  
      for (size_t j = i; j < tids.size(); j++) {
        if (tmodel_.IsFinal(tids[j])) { // Found "final transition"..   Note:
          // may be "reordered" with its self loops.
          if (!info_.reorder) return (j+1 == tids.size());
          else {
            // Make sure the only thing that follows this is self-loops
            // of the final transition-state.
            for (size_t k = j + 1; k < tids.size(); k++)
              if (tmodel_.TransitionIdToTransitionState(tids[k])
                  != tmodel_.TransitionIdToTransitionState(tids[j])
                  || !tmodel_.IsSelfLoop(tids[k]))
                return false;
            return true;
          }
        }
      }
      return false; // Found no final state.
    }
  
    bool TestArcPartialWord(const CompactLatticeArc &arc) {
      if (arc.ilabel != info_.partial_word_label) return false; // label should
      // be the partial-word label.
      const std::vector<int32> &tids = arc.weight.String();
      if (tids.empty()) return false;
      return true; // We're pretty liberal when it comes to partial words here.
    }
  
    void TestFinal(const CompactLatticeWeight &w) {
      if (!w.String().empty())
        KALDI_ERR << "Expect to have no strings on final-weights of lattices.";
    }
    void TestEquivalent() {
      CompactLattice aligned_lat(aligned_lat_);
      if (info_.silence_label != 0) { // remove silence labels.
        std::vector<int32> to_remove;
        to_remove.push_back(info_.silence_label);
        RemoveSomeInputSymbols(to_remove, &aligned_lat);
        Project(&aligned_lat, fst::PROJECT_INPUT);
      }
  
      if (!RandEquivalent(lat_, aligned_lat, 5/*paths*/, 1.0e+10/*delta*/, Rand()/*seed*/,
                          200/*path length (max?)*/))
        KALDI_ERR << "Equivalence test failed (testing word-alignment of lattices.) "
                  << "Make sure your model and lattices match!";
    }
  
    const CompactLattice &lat_;
    const TransitionModel &tmodel_;
    const WordBoundaryInfo &info_;
    const CompactLattice &aligned_lat_;
  };
  
  
  
  
  /// You should only test a lattice if WordAlignLattice returned true (i.e. it
  /// succeeded and it wasn't a forced-out lattice); otherwise the test will most
  /// likely fail.
  void TestWordAlignedLattice(const CompactLattice &lat,
                              const TransitionModel &tmodel,
                              const WordBoundaryInfo &info,
                              const CompactLattice &aligned_lat) {
    WordAlignedLatticeTester t(lat, tmodel, info, aligned_lat);
    t.Test();
  }
  
  
  
  
  
  
  }  // namespace kaldi