Blame view
src/lm/arpa-lm-compiler-test.cc
7.89 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
// lm/arpa-lm-compiler-test.cc // Copyright 2009-2011 Gilles Boulianne // Copyright 2016 Smart Action LLC (kkm) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <iostream> #include <string> #include <sstream> #include "base/kaldi-error.h" #include "base/kaldi-math.h" #include "lm/arpa-lm-compiler.h" #include "util/kaldi-io.h" namespace kaldi { // Predefine some symbol values, because any integer is as good than any other. enum { kEps = 0, kDisambig, kBos, kEos, }; // Number of random sentences for coverage test. static const int kRandomSentences = 50; // Creates an FST that generates any sequence of symbols taken from given // symbol table. The FST is then associated with the symbol table. static fst::StdVectorFst* CreateGenFst(bool seps, const fst::SymbolTable* pst) { fst::StdVectorFst* genFst = new fst::StdVectorFst; genFst->SetInputSymbols(pst); genFst->SetOutputSymbols(pst); fst::StdArc::StateId midId = genFst->AddState(); if (!seps) { fst::StdArc::StateId initId = genFst->AddState(); fst::StdArc::StateId finalId = genFst->AddState(); genFst->SetStart(initId); genFst->SetFinal(finalId, fst::StdArc::Weight::One()); genFst->AddArc(initId, fst::StdArc(kBos, kBos, 0, midId)); genFst->AddArc(midId, fst::StdArc(kEos, kEos, 0, finalId)); } else { genFst->SetStart(midId); genFst->SetFinal(midId, fst::StdArc::Weight::One()); } // Add a loop for each symbol in the table except the four special ones. fst::SymbolTableIterator si(*pst); for (si.Reset(); !si.Done(); si.Next()) { if (si.Value() == kBos || si.Value() == kEos || si.Value() == kEps || si.Value() == kDisambig) continue; genFst->AddArc(midId, fst::StdArc(si.Value(), si.Value(), fst::StdArc::Weight::One(), midId)); } return genFst; } // Compile given ARPA file. ArpaLmCompiler* Compile(bool seps, const string &infile) { ArpaParseOptions options; fst::SymbolTable symbols; // Use spaces on special symbols, so we rather fail than read them by mistake. symbols.AddSymbol(" <eps>", kEps); symbols.AddSymbol(" #0", kDisambig); options.bos_symbol = symbols.AddSymbol("<s>", kBos); options.eos_symbol = symbols.AddSymbol("</s>", kEos); options.oov_handling = ArpaParseOptions::kAddToSymbols; // Tests in this form cannot be run with epsilon substitution, unless every // random path is also fitted with a #0-transducing self-loop. ArpaLmCompiler* lm_compiler = new ArpaLmCompiler(options, seps ? kDisambig : 0, &symbols); { Input ki(infile); lm_compiler->Read(ki.Stream()); } return lm_compiler; } // Add a state to an FSA after last_state, add a form last_state to the new // atate, and return the new state. fst::StdArc::StateId AddToChainFsa(fst::StdMutableFst* fst, fst::StdArc::StateId last_state, int64 symbol) { fst::StdArc::StateId next_state = fst->AddState(); fst->AddArc(last_state, fst::StdArc(symbol, symbol, 0, next_state)); return next_state; } // Add a disambiguator-generating self loop to every state of an FST. void AddSelfLoops(fst::StdMutableFst* fst) { for (fst::StateIterator<fst::StdMutableFst> siter(*fst); !siter.Done(); siter.Next()) { fst->AddArc(siter.Value(), fst::StdArc(kEps, kDisambig, 0, siter.Value())); } } // Compiles infile and then runs kRandomSentences random coverage tests on the // compiled FST. bool CoverageTest(bool seps, const string &infile) { // Compile ARPA model. ArpaLmCompiler* lm_compiler = Compile(seps, infile); // Create an FST that generates any sequence of symbols taken from the model // output. fst::StdVectorFst* genFst = CreateGenFst(seps, lm_compiler->Fst().OutputSymbols()); int num_successes = 0; for (int32 i = 0; i < kRandomSentences; ++i) { // Generate a random sentence FST. fst::StdVectorFst sentence; RandGen(*genFst, &sentence); if (seps) AddSelfLoops(&sentence); fst::ArcSort(lm_compiler->MutableFst(), fst::StdOLabelCompare()); // The past must successfullycompose with the LM FST. fst::StdVectorFst composition; Compose(sentence, lm_compiler->Fst(), &composition); if (composition.Start() != fst::kNoStateId) ++num_successes; } delete genFst; delete lm_compiler; bool ok = num_successes == kRandomSentences; if (!ok) { KALDI_WARN << "Coverage test failed on " << infile << ": composed " << num_successes << "/" << kRandomSentences; } return ok; } bool ScoringTest(bool seps, const string &infile, const string& sentence, float expected) { ArpaLmCompiler* lm_compiler = Compile(seps, infile); const fst::SymbolTable* symbols = lm_compiler->Fst().InputSymbols(); // Create a sentence FST for scoring. fst::StdVectorFst sentFst; fst::StdArc::StateId state = sentFst.AddState(); sentFst.SetStart(state); if (!seps) { state = AddToChainFsa(&sentFst, state, kBos); } std::stringstream ss(sentence); string word; while (ss >> word) { int64 word_sym = symbols->Find(word); KALDI_ASSERT(word_sym != -1); state = AddToChainFsa(&sentFst, state, word_sym); } if (!seps) { state = AddToChainFsa(&sentFst, state, kEos); } if (seps) { AddSelfLoops(&sentFst); } sentFst.SetFinal(state, 0); sentFst.SetOutputSymbols(symbols); // Do the composition and extract final weight. fst::StdVectorFst composed; fst::Compose(sentFst, lm_compiler->Fst(), &composed); delete lm_compiler; if (composed.Start() == fst::kNoStateId) { KALDI_WARN << "Test sentence " << sentence << " did not compose " << "with the language model FST "; return false; } std::vector<fst::StdArc::Weight> shortest; fst::ShortestDistance(composed, &shortest, true); float actual = shortest[composed.Start()].Value(); bool ok = ApproxEqual(expected, actual); if (!ok) { KALDI_WARN << "Scored " << sentence << " in " << infile << ": Expected=" << expected << " actual=" << actual; } return ok; } bool ThrowsExceptionTest(bool seps, const string &infile) { try { // Make memory cleanup easy in both cases of try-catch block. std::unique_ptr<ArpaLmCompiler> compiler(Compile(seps, infile)); return false; } catch (const KaldiFatalError&) { return true; } } } // namespace kaldi bool RunAllTests(bool seps) { bool ok = true; ok &= kaldi::CoverageTest(seps, "test_data/missing_backoffs.arpa"); ok &= kaldi::CoverageTest(seps, "test_data/unused_backoffs.arpa"); ok &= kaldi::CoverageTest(seps, "test_data/input.arpa"); ok &= kaldi::ScoringTest(seps, "test_data/input.arpa", "b b b a", 59.2649); ok &= kaldi::ScoringTest(seps, "test_data/input.arpa", "a b", 4.36082); ok &= kaldi::ThrowsExceptionTest(seps, "test_data/missing_bos.arpa"); if (!ok) { KALDI_WARN << "Tests " << (seps ? "with" : "without") << " epsilon substitution FAILED"; } return ok; } int main(int argc, char *argv[]) { bool ok = true; ok &= RunAllTests(false); // Without disambiguators (old behavior). ok &= RunAllTests(true); // With epsilon substitution (new behavior). if (ok) { KALDI_LOG << "All tests passed"; return 0; } else { KALDI_WARN << "Test FAILED"; return 1; } } |