Blame view

src/lm/const-arpa-lm.cc 36.5 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
  // lm/const-arpa-lm.cc
  
  // Copyright 2014  Guoguo Chen
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <algorithm>
  #include <limits>
  #include <sstream>
  #include <utility>
  
  #include "base/kaldi-math.h"
  #include "lm/arpa-file-parser.h"
  #include "lm/const-arpa-lm.h"
  #include "util/stl-utils.h"
  #include "util/text-utils.h"
  
  
  namespace kaldi {
  
  // Auxiliary struct for converting ConstArpaLm format langugae model to Arpa
  // format.
  struct ArpaLine {
    std::vector<int32> words;  // Sequence of words to be printed.
    float logprob;             // Logprob corresponds to word sequence.
    float backoff_logprob;     // Backoff_logprob corresponds to word sequence.
    // Comparison function for sorting.
    bool operator < (const ArpaLine &other) const {
      if (words.size() < other.words.size()) {
        return true;
      } else if (words.size() > other.words.size()) {
        return false;
      } else {
        return words < other.words;
      }
    }
  };
  
  // Auxiliary class to build ConstArpaLm. We first use this class to figure out
  // the relative address of different LmStates, and then put everything into one
  // block in memory.
  class LmState {
   public:
    union ChildType {
      // If child is not the final order, we keep the pointer to its LmState.
      LmState* state;
  
      // If child is the final order, we only keep the log probability for it.
      float prob;
    };
  
    struct ChildrenVectorLessThan {
      bool operator()(
          const std::pair<int32, union ChildType>& lhs,
          const std::pair<int32, union ChildType>& rhs) const {
        return lhs.first < rhs.first;
      }
    };
  
    LmState(const bool is_unigram, const bool is_child_final_order,
            const float logprob, const float backoff_logprob) :
        is_unigram_(is_unigram), is_child_final_order_(is_child_final_order),
        logprob_(logprob), backoff_logprob_(backoff_logprob) {}
  
    void SetMyAddress(const int64 address) {
      my_address_ = address;
    }
  
    void AddChild(const int32 word, LmState* child_state) {
      KALDI_ASSERT(!is_child_final_order_);
      ChildType child;
      child.state = child_state;
      children_.push_back(std::make_pair(word, child));
    }
  
    void AddChild(const int32 word, const float child_prob) {
      KALDI_ASSERT(is_child_final_order_);
      ChildType child;
      child.prob = child_prob;
      children_.push_back(std::make_pair(word, child));
    }
  
    int64 MyAddress() const {
      return my_address_;
    }
  
    bool IsUnigram() const {
      return is_unigram_;
    }
  
    bool IsChildFinalOrder() const {
      return is_child_final_order_;
    }
  
    float Logprob() const {
      return logprob_;
    }
  
    float BackoffLogprob() const {
      return backoff_logprob_;
    }
  
    int32 NumChildren() const {
      return children_.size();
    }
  
    std::pair<int32, union ChildType> GetChild(const int32 index) {
      KALDI_ASSERT(index < children_.size());
      KALDI_ASSERT(index >= 0);
      return children_[index];
    }
  
    void SortChildren() {
      std::sort(children_.begin(), children_.end(), ChildrenVectorLessThan());
    }
  
    // Checks if the current LmState is a leaf.
    bool IsLeaf() const {
      return (backoff_logprob_ == 0.0 && children_.empty());
    }
  
    // Computes the size of the memory that the current LmState would take in
    // <lm_states> array. It's the number of 4-byte chunks.
    int32 MemSize() const {
      if (IsLeaf() && !is_unigram_) {
        // We don't create an entry in this case; the logprob will be stored in
        // the same int32 that we would normally store the pointer in.
        return 0;
      } else {
        // We store the following information:
        // logprob, backoff_logprob, children.size() and children data.
        return (3 + 2 * children_.size());
      }
    }
  
   private:
    // Unigram states will have LmStates even if they are leaves, therefore we
    // need to note when this is a unigram or not.
    bool is_unigram_;
  
    // If the current LmState has an order of (final_order - 1), then its child
    // must be the final order. We only keep the log probability for its child.
    bool is_child_final_order_;
  
    // When we compute the addresses of the LmStates as offsets into <lm_states_>
    // pointer, and put the offsets here. Note that this is just offset, not
    // actual pointer.
    int64 my_address_;
  
    // Language model log probability of the current sequence. For example, if
    // this state is "A B", then it would be the logprob of "A -> B".
    float logprob_;
  
    // Language model backoff log probability of the current sequence, e.g., state
    // "A B -> X" backing off to "B -> X".
    float backoff_logprob_;
  
    // List of children.
    std::vector<std::pair<int32, union ChildType> > children_;
  };
  
  // Class to build ConstArpaLm from Arpa format language model. It relies on the
  // auxiliary class LmState above.
  class ConstArpaLmBuilder : public ArpaFileParser {
   public:
    explicit ConstArpaLmBuilder(ArpaParseOptions options)
        : ArpaFileParser(options, NULL) {
      ngram_order_ = 0;
      num_words_ = 0;
      overflow_buffer_size_ = 0;
      lm_states_size_ = 0;
      max_address_offset_ = pow(2, 30) - 1;
      is_built_ = false;
      lm_states_ = NULL;
      unigram_states_ = NULL;
      overflow_buffer_ = NULL;
    }
  
    ~ConstArpaLmBuilder() {
      unordered_map<std::vector<int32>,
                    LmState*, VectorHasher<int32> >::iterator iter;
      for (iter = seq_to_state_.begin(); iter != seq_to_state_.end(); ++iter) {
        delete iter->second;
      }
      if (is_built_) {
        delete[] lm_states_;
        delete[] unigram_states_;
        delete[] overflow_buffer_;
      }
    }
  
    // Writes ConstArpaLm.
    void Write(std::ostream &os, bool binary) const;
  
    void SetMaxAddressOffset(const int32 max_address_offset) {
      KALDI_WARN << "You are changing <max_address_offset_>; the default should "
          << "not be changed unless you are in testing mode.";
      max_address_offset_ = max_address_offset;
    }
  
   protected:
    // ArpaFileParser overrides.
    virtual void HeaderAvailable();
    virtual void ConsumeNGram(const NGram& ngram);
    virtual void ReadComplete();
  
   private:
    struct WordsAndLmStatePairLessThan {
      bool operator()(
          const std::pair<std::vector<int32>*, LmState*>& lhs,
          const std::pair<std::vector<int32>*, LmState*>& rhs) const {
        return *(lhs.first) < *(rhs.first);
      }
    };
  
   private:
    // Indicating if ConstArpaLm has been built or not.
    bool is_built_;
  
    // Maximum relative address for the child. We put it here just for testing.
    // The default value is 30-bits and should not be changed except for testing.
    int32 max_address_offset_;
  
    // N-gram order of language model. This can be figured out from "/data/"
    // section in Arpa format language model.
    int32 ngram_order_;
  
    // Index of largest word-id plus one. It defines the end of <unigram_states_>
    // array.
    int32 num_words_;
  
    // Number of entries in the overflow buffer for pointers that couldn't be
    // represented as a 30-bit relative index.
    int32 overflow_buffer_size_;
  
    // Size of the <lm_states_> array, which will be needed by I/O.
    int64 lm_states_size_;
  
    // Memory blcok for storing LmStates.
    int32* lm_states_;
  
    // Memory block for storing pointers of unigram LmStates.
    int32** unigram_states_;
  
    // Memory block for storing pointers of the LmStates that have large relative
    // address to their parents.
    int32** overflow_buffer_;
  
    // Hash table from word sequences to LmStates.
    unordered_map<std::vector<int32>,
                  LmState*, VectorHasher<int32> > seq_to_state_;
  };
  
  void ConstArpaLmBuilder::HeaderAvailable() {
    ngram_order_ = NgramCounts().size();
  }
  
  void ConstArpaLmBuilder::ConsumeNGram(const NGram &ngram) {
    int32 cur_order = ngram.words.size();
    // If <ngram_order_> is larger than 1, then we do not create LmState for
    // the final order entry. We only keep the log probability for it.
    LmState *lm_state = NULL;
    if (cur_order != ngram_order_ || ngram_order_ == 1) {
      lm_state = new LmState(cur_order == 1,
                             cur_order == ngram_order_ - 1,
                             ngram.logprob, ngram.backoff);
  
      if (seq_to_state_.find(ngram.words) != seq_to_state_.end()) {
        std::ostringstream os;
        os << "[ ";
        for (size_t i = 0; i < ngram.words.size(); i++) {
          os << ngram.words[i] << " ";
        }
        os <<"]";
  
        KALDI_ERR << "N-gram " << os.str() << " appears twice in the arpa file";
      }
      seq_to_state_[ngram.words] = lm_state;
    }
  
    // If n-gram order is larger than 1, we have to add possible child to
    // existing LmStates. We have the following two assumptions:
    // 1. N-grams are processed from small order to larger ones, i.e., from
    //    1, 2, ... to the highest order.
    // 2. If a n-gram exists in the Arpa format language model, then the
    //    "history" n-gram also exists. For example, if "A B C" is a valid
    //    n-gram, then "A B" is also a valid n-gram.
    int32 last_word = ngram.words[cur_order - 1];
    if (cur_order > 1) {
      std::vector<int32> hist(ngram.words.begin(), ngram.words.end() - 1);
      unordered_map<std::vector<int32>,
                    LmState*, VectorHasher<int32> >::iterator hist_iter;
      hist_iter = seq_to_state_.find(hist);
      if (hist_iter == seq_to_state_.end()) {
        std::ostringstream ss;
        for (int i = 0; i < cur_order; ++i)
          ss << (i == 0 ? '[' : ' ') << ngram.words[i];
        KALDI_ERR << "In line " << LineNumber() << ": "
                  << cur_order << "-gram " << ss.str() << "] does not have "
                  << "a parent model " << cur_order << "-gram.";
      }
      if (cur_order != ngram_order_ || ngram_order_ == 1) {
        KALDI_ASSERT(lm_state != NULL);
        KALDI_ASSERT(!hist_iter->second->IsChildFinalOrder());
        hist_iter->second->AddChild(last_word, lm_state);
      } else {
        KALDI_ASSERT(lm_state == NULL);
        KALDI_ASSERT(hist_iter->second->IsChildFinalOrder());
        hist_iter->second->AddChild(last_word, ngram.logprob);
      }
    } else {
      // Figures out <max_word_id>.
      num_words_ = std::max(num_words_, last_word + 1);
    }
  }
  
  // ConstArpaLm can be built in the following steps, assuming we have already
  // created LmStates <seq_to_state_>:
  // 1. Sort LmStates lexicographically.
  //    This enables us to compute relative address. When we say lexicographic, we
  //    treat the word-ids as letters. After sorting, the LmStates are in the
  //    following order:
  //    ...
  //    A B
  //    A B A
  //    A B B
  //    A B C
  //    ...
  //    where each line represents a LmState.
  // 2. Update <my_address> in LmState, which is relative to the first element in
  //    <sorted_vec>.
  // 3. Put the following structure into the memory block
  //    struct LmState {
  //      float logprob;
  //      float backoff_logprob;
  //      int32 num_children;
  //      std::pair<int32, int32> [] children;
  //    }
  //
  //    At the same time, we will also create two special buffers:
  //    <unigram_states_>
  //    <overflow_buffer_>
  void ConstArpaLmBuilder::ReadComplete() {
    // STEP 1: sorting LmStates lexicographically.
    // Vector for holding the sorted LmStates.
    std::vector<std::pair<std::vector<int32>*, LmState*> > sorted_vec;
    unordered_map<std::vector<int32>,
                  LmState*, VectorHasher<int32> >::iterator iter;
    for (iter = seq_to_state_.begin(); iter != seq_to_state_.end(); ++iter) {
      if (iter->second->MemSize() > 0) {
        sorted_vec.push_back(
            std::make_pair(const_cast<std::vector<int32>*>(&(iter->first)),
                           iter->second));
      }
    }
  
    std::sort(sorted_vec.begin(), sorted_vec.end(),
              WordsAndLmStatePairLessThan());
  
    // STEP 2: updating <my_address> in LmState.
    for (int32 i = 0; i < sorted_vec.size(); ++i) {
      lm_states_size_ += sorted_vec[i].second->MemSize();
      if (i == 0) {
        sorted_vec[i].second->SetMyAddress(0);
      } else {
        sorted_vec[i].second->SetMyAddress(sorted_vec[i - 1].second->MyAddress()
            + sorted_vec[i - 1].second->MemSize());
      }
    }
  
    // STEP 3: creating memory block to store LmStates.
    // Reserves a memory block for LmStates.
    int64 lm_states_index = 0;
    try {
      lm_states_ = new int32[lm_states_size_];
    } catch(const std::exception &e) {
      KALDI_ERR << e.what();
    }
  
    // Puts data into memory block.
    unigram_states_ = new int32*[num_words_];
    std::vector<int32*> overflow_buffer_vec;
    for (int32 i = 0; i < num_words_; ++i) {
      unigram_states_[i] = NULL;
    }
    for (int32 i = 0; i < sorted_vec.size(); ++i) {
      // Current address.
      int32* parent_address = lm_states_ + lm_states_index;
  
      // Adds logprob.
      Int32AndFloat logprob_f(sorted_vec[i].second->Logprob());
      lm_states_[lm_states_index++] = logprob_f.i;
  
      // Adds backoff_logprob.
      Int32AndFloat backoff_logprob_f(sorted_vec[i].second->BackoffLogprob());
      lm_states_[lm_states_index++] = backoff_logprob_f.i;
  
      // Adds num_children.
      lm_states_[lm_states_index++] = sorted_vec[i].second->NumChildren();
  
      // Adds children, there are 3 cases:
      // 1. Child is a leaf and not unigram
      // 2. Child is not a leaf or is unigram
      //    2.1 Relative address can be represented by 30 bits
      //    2.2 Relative address cannot be represented by 30 bits
      sorted_vec[i].second->SortChildren();
      for (int32 j = 0; j < sorted_vec[i].second->NumChildren(); ++j) {
        int32 child_info;
        if (sorted_vec[i].second->IsChildFinalOrder() ||
            sorted_vec[i].second->GetChild(j).second.state->MemSize() == 0) {
          // Child is a leaf and not unigram. In this case we will not create an
          // entry in <lm_states_>; instead, we put the logprob in the place where
          // we normally store the poitner.
          Int32AndFloat child_logprob_f;
          if (sorted_vec[i].second->IsChildFinalOrder()) {
            child_logprob_f.f = sorted_vec[i].second->GetChild(j).second.prob;
          } else {
            child_logprob_f.f =
                sorted_vec[i].second->GetChild(j).second.state->Logprob();
          }
          child_info = child_logprob_f.i;
          child_info &= ~1;   // Sets the last bit to 0 so <child_info> is even.
        } else {
          // Child is not a leaf or is unigram.
          int64 offset =
              sorted_vec[i].second->GetChild(j).second.state->MyAddress()
              - sorted_vec[i].second->MyAddress();
          KALDI_ASSERT(offset > 0);
          if (offset <= max_address_offset_) {
            // Relative address can be represented by 30 bits.
            child_info = offset * 2;
            child_info |= 1;
          } else {
            // Relative address cannot be represented by 30 bits, we have to put
            // the child address into <overflow_buffer_>.
            int32* abs_address = parent_address + offset;
            overflow_buffer_vec.push_back(abs_address);
            int32 overflow_buffer_index = overflow_buffer_vec.size() - 1;
            child_info = overflow_buffer_index * 2;
            child_info |= 1;
            child_info *= -1;
          }
        }
        // Child word.
        lm_states_[lm_states_index++] = sorted_vec[i].second->GetChild(j).first;
        // Child info.
        lm_states_[lm_states_index++] = child_info;
      }
  
      // If the current state corresponds to an unigram, then create a separate
      // loop up table to improve efficiency, since those will be looked up pretty
      // frequently.
      if (sorted_vec[i].second->IsUnigram()) {
        KALDI_ASSERT(sorted_vec[i].first->size() == 1);
        unigram_states_[(*sorted_vec[i].first)[0]] = parent_address;
      }
    }
    KALDI_ASSERT(lm_states_size_ == lm_states_index);
  
    // Move <overflow_buffer_> from vector holder to array.
    overflow_buffer_size_ = overflow_buffer_vec.size();
    overflow_buffer_ = new int32*[overflow_buffer_size_];
    for (int32 i = 0; i < overflow_buffer_size_; ++i) {
      overflow_buffer_[i] = overflow_buffer_vec[i];
    }
  
    is_built_ = true;
  }
  
  void ConstArpaLmBuilder::Write(std::ostream &os, bool binary) const {
    if (!binary) {
      KALDI_ERR << "text-mode writing is not implemented for ConstArpaLmBuilder.";
    }
    KALDI_ASSERT(is_built_);
  
    // Creates ConstArpaLm.
    ConstArpaLm const_arpa_lm(
        Options().bos_symbol, Options().eos_symbol, Options().unk_symbol,
        ngram_order_, num_words_, overflow_buffer_size_, lm_states_size_,
        unigram_states_, overflow_buffer_, lm_states_);
    const_arpa_lm.Write(os, binary);
  }
  
  void ConstArpaLm::Write(std::ostream &os, bool binary) const {
    KALDI_ASSERT(initialized_);
    if (!binary) {
      KALDI_ERR << "text-mode writing is not implemented for ConstArpaLm.";
    }
  
    WriteToken(os, binary, "<ConstArpaLm>");
  
    // Misc info.
    WriteToken(os, binary, "<LmInfo>");
    WriteBasicType(os, binary, bos_symbol_);
    WriteBasicType(os, binary, eos_symbol_);
    WriteBasicType(os, binary, unk_symbol_);
    WriteBasicType(os, binary, ngram_order_);
    WriteToken(os, binary, "</LmInfo>");
  
    // LmStates section.
    WriteToken(os, binary, "<LmStates>");
    WriteBasicType(os, binary, lm_states_size_);
    os.write(reinterpret_cast<char *>(lm_states_),
             sizeof(int32) * lm_states_size_);
    if (!os.good()) {
      KALDI_ERR << "ConstArpaLm <LmStates> section writing failed.";
    }
    WriteToken(os, binary, "</LmStates>");
  
    // Unigram section. We write memory offset to disk instead of the absolute
    // pointers.
    WriteToken(os, binary, "<LmUnigram>");
    WriteBasicType(os, binary, num_words_);
    int64* tmp_unigram_address = new int64[num_words_];
    for (int32 i = 0; i < num_words_; ++i) {
      // The relative address here is a little bit tricky:
      // 1. If the original address is NULL, then we set the relative address to
      //    zero.
      // 2. If the original address is not NULL, we set it to the following:
      //      unigram_states_[i] - lm_states_ + 1
      //    we plus 1 to ensure that the above value is positive.
      tmp_unigram_address[i] = (unigram_states_[i] == NULL) ? 0 :
          unigram_states_[i] - lm_states_ + 1;
    }
    os.write(reinterpret_cast<char *>(tmp_unigram_address),
             sizeof(int64) * num_words_);
    if (!os.good()) {
      KALDI_ERR << "ConstArpaLm <LmUnigram> section writing failed.";
    }
    delete[] tmp_unigram_address;   // Releases the memory.
    tmp_unigram_address = NULL;
    WriteToken(os, binary, "</LmUnigram>");
  
    // Overflow section. We write memory offset to disk instead of the absolute
    // pointers.
    WriteToken(os, binary, "<LmOverflow>");
    WriteBasicType(os, binary, overflow_buffer_size_);
    int64* tmp_overflow_address = new int64[overflow_buffer_size_];
    for (int32 i = 0; i < overflow_buffer_size_; ++i) {
      // The relative address here is a little bit tricky:
      // 1. If the original address is NULL, then we set the relative address to
      //    zero.
      // 2. If the original address is not NULL, we set it to the following:
      //      overflow_buffer_[i] - lm_states_ + 1
      //    we plus 1 to ensure that the above value is positive.
      tmp_overflow_address[i] = (overflow_buffer_[i] == NULL) ? 0 :
          overflow_buffer_[i] - lm_states_ + 1;
    }
    os.write(reinterpret_cast<char *>(tmp_overflow_address),
             sizeof(int64) * overflow_buffer_size_);
    if (!os.good()) {
      KALDI_ERR << "ConstArpaLm <LmOverflow> section writing failed.";
    }
    delete[] tmp_overflow_address;
    tmp_overflow_address = NULL;
    WriteToken(os, binary, "</LmOverflow>");
    WriteToken(os, binary, "</ConstArpaLm>");
  }
  
  void ConstArpaLm::Read(std::istream &is, bool binary) {
    KALDI_ASSERT(!initialized_);
    if (!binary) {
      KALDI_ERR << "text-mode reading is not implemented for ConstArpaLm.";
    }
  
    int first_char = is.peek();
    if (first_char == 4) {  // Old on-disk format starts with length of int32.
      ReadInternalOldFormat(is, binary);
    } else {                // New on-disk format starts with token <ConstArpaLm>.
      ReadInternal(is, binary);
    }
  }
  
  void ConstArpaLm::ReadInternal(std::istream &is, bool binary) {
    KALDI_ASSERT(!initialized_);
    if (!binary) {
      KALDI_ERR << "text-mode reading is not implemented for ConstArpaLm.";
    }
  
    ExpectToken(is, binary, "<ConstArpaLm>");
  
    // Misc info.
    ExpectToken(is, binary, "<LmInfo>");
    ReadBasicType(is, binary, &bos_symbol_);
    ReadBasicType(is, binary, &eos_symbol_);
    ReadBasicType(is, binary, &unk_symbol_);
    ReadBasicType(is, binary, &ngram_order_);
    ExpectToken(is, binary, "</LmInfo>");
  
    // LmStates section.
    ExpectToken(is, binary, "<LmStates>");
    ReadBasicType(is, binary, &lm_states_size_);
    lm_states_ = new int32[lm_states_size_];
    is.read(reinterpret_cast<char *>(lm_states_),
            sizeof(int32) * lm_states_size_);
    if (!is.good()) {
      KALDI_ERR << "ConstArpaLm <LmStates> section reading failed.";
    }
    ExpectToken(is, binary, "</LmStates>");
  
    // Unigram section. We write memory offset to disk instead of the absolute
    // pointers.
    ExpectToken(is, binary, "<LmUnigram>");
    ReadBasicType(is, binary, &num_words_);
    unigram_states_ = new int32*[num_words_];
    int64* tmp_unigram_address = new int64[num_words_];
    is.read(reinterpret_cast<char *>(tmp_unigram_address),
            sizeof(int64) * num_words_);
    if (!is.good()) {
      KALDI_ERR << "ConstArpaLm <LmUnigram> section reading failed.";
    }
    for (int32 i = 0; i < num_words_; ++i) {
      // Check out how we compute the relative address in ConstArpaLm::Write().
      unigram_states_[i] = (tmp_unigram_address[i] == 0) ? NULL
          : lm_states_ + tmp_unigram_address[i] - 1;
    }
    delete[] tmp_unigram_address;
    tmp_unigram_address = NULL;
    ExpectToken(is, binary, "</LmUnigram>");
  
    // Overflow section. We write memory offset to disk instead of the absolute
    // pointers.
    ExpectToken(is, binary, "<LmOverflow>");
    ReadBasicType(is, binary, &overflow_buffer_size_);
    overflow_buffer_ = new int32*[overflow_buffer_size_];
    int64* tmp_overflow_address = new int64[overflow_buffer_size_];
    is.read(reinterpret_cast<char *>(tmp_overflow_address),
            sizeof(int64) * overflow_buffer_size_);
    if (!is.good()) {
      KALDI_ERR << "ConstArpaLm <LmOverflow> section reading failed.";
    }
    for (int32 i = 0; i < overflow_buffer_size_; ++i) {
      // Check out how we compute the relative address in ConstArpaLm::Write().
      overflow_buffer_[i] = (tmp_overflow_address[i] == 0) ? NULL
          : lm_states_ + tmp_overflow_address[i] - 1;
    }
    delete[] tmp_overflow_address;
    tmp_overflow_address = NULL;
    ExpectToken(is, binary, "</LmOverflow>");
    ExpectToken(is, binary, "</ConstArpaLm>");
  
    KALDI_ASSERT(ngram_order_ > 0);
    KALDI_ASSERT(bos_symbol_ < num_words_ && bos_symbol_ > 0);
    KALDI_ASSERT(eos_symbol_ < num_words_ && eos_symbol_ > 0);
    KALDI_ASSERT(unk_symbol_ < num_words_ &&
                 (unk_symbol_ > 0 || unk_symbol_ == -1));
    lm_states_end_ = lm_states_ + lm_states_size_ - 1;
    memory_assigned_ = true;
    initialized_ = true;
  }
  
  void ConstArpaLm::ReadInternalOldFormat(std::istream &is, bool binary) {
    KALDI_ASSERT(!initialized_);
    if (!binary) {
      KALDI_ERR << "text-mode reading is not implemented for ConstArpaLm.";
    }
  
    // Misc info.
    ReadBasicType(is, binary, &bos_symbol_);
    ReadBasicType(is, binary, &eos_symbol_);
    ReadBasicType(is, binary, &unk_symbol_);
    ReadBasicType(is, binary, &ngram_order_);
  
    // LmStates section.
    // In the deprecated version, <lm_states_size_> used to be type of int32,
    // which was a bug. We therefore use int32 for read for back-compatibility.
    int32 lm_states_size_int32;
    ReadBasicType(is, binary, &lm_states_size_int32);
    lm_states_size_ = static_cast<int64>(lm_states_size_int32);
    lm_states_ = new int32[lm_states_size_];
    for (int64 i = 0; i < lm_states_size_; ++i) {
      ReadBasicType(is, binary, &lm_states_[i]);
    }
  
    // Unigram section. We write memory offset to disk instead of the absolute
    // pointers.
    ReadBasicType(is, binary, &num_words_);
    unigram_states_ = new int32*[num_words_];
    for (int32 i = 0; i < num_words_; ++i) {
      int64 tmp_address;
      ReadBasicType(is, binary, &tmp_address);
      // Check out how we compute the relative address in ConstArpaLm::Write().
      unigram_states_[i] =
          (tmp_address == 0) ? NULL : lm_states_ + tmp_address - 1;
    }
  
    // Overflow section. We write memory offset to disk instead of the absolute
    // pointers.
    ReadBasicType(is, binary, &overflow_buffer_size_);
    overflow_buffer_ = new int32*[overflow_buffer_size_];
    for (int32 i = 0; i < overflow_buffer_size_; ++i) {
      int64 tmp_address;
      ReadBasicType(is, binary, &tmp_address);
      // Check out how we compute the relative address in ConstArpaLm::Write().
      overflow_buffer_[i] =
          (tmp_address == 0) ? NULL : lm_states_ + tmp_address - 1;
    }
    KALDI_ASSERT(ngram_order_ > 0);
    KALDI_ASSERT(bos_symbol_ < num_words_ && bos_symbol_ > 0);
    KALDI_ASSERT(eos_symbol_ < num_words_ && eos_symbol_ > 0);
    KALDI_ASSERT(unk_symbol_ < num_words_ &&
                 (unk_symbol_ > 0 || unk_symbol_ == -1));
    lm_states_end_ = lm_states_ + lm_states_size_ - 1;
    memory_assigned_ = true;
    initialized_ = true;
  }
  
  bool ConstArpaLm::HistoryStateExists(const std::vector<int32>& hist) const {
    // We do not create LmState for empty word sequence, but technically it is the
    // history state of all unigrams.
    if (hist.size() == 0) {
      return true;
    }
  
    // Tries to locate the LmState of the given word sequence.
    int32* lm_state = GetLmState(hist);
    if (lm_state == NULL) {
      // <lm_state> does not exist means <hist> has no child.
      return false;
    } else {
      // Note that we always create LmState for unigrams, so even if <lm_state> is
      // not NULL, we still have to check if it has child.
      KALDI_ASSERT(lm_state >= lm_states_);
      KALDI_ASSERT(lm_state + 2 <= lm_states_end_);
      // <lm_state + 2> points to <num_children>.
      if (*(lm_state + 2) > 0) {
        return true;
      } else {
        return false;
      }
    }
    return true;
  }
  
  float ConstArpaLm::GetNgramLogprob(const int32 word,
                                     const std::vector<int32>& hist) const {
    KALDI_ASSERT(initialized_);
  
    // If the history size plus one is larger than <ngram_order_>, remove the old
    // words.
    std::vector<int32> mapped_hist(hist);
    while (mapped_hist.size() >= ngram_order_) {
      mapped_hist.erase(mapped_hist.begin(), mapped_hist.begin() + 1);
    }
    KALDI_ASSERT(mapped_hist.size() + 1 <= ngram_order_);
  
    // TODO(guoguo): check with Dan if this is reasonable.
    // Maps possible out-of-vocabulary words to <unk>. If a word does not have a
    // corresponding LmState, we treat it as <unk>. We map it to <unk> if <unk> is
    // specified.
    int32 mapped_word = word;
    if (unk_symbol_ != -1) {
      KALDI_ASSERT(mapped_word >= 0);
      if (mapped_word >= num_words_ || unigram_states_[mapped_word] == NULL) {
        mapped_word = unk_symbol_;
      }
      for (int32 i = 0; i < mapped_hist.size(); ++i) {
        KALDI_ASSERT(mapped_hist[i] >= 0);
        if (mapped_hist[i] >= num_words_ ||
            unigram_states_[mapped_hist[i]] == NULL) {
          mapped_hist[i] = unk_symbol_;
        }
      }
    }
  
    // Loops up n-gram probability.
    return GetNgramLogprobRecurse(mapped_word, mapped_hist);
  }
  
  float ConstArpaLm::GetNgramLogprobRecurse(
      const int32 word, const std::vector<int32>& hist) const {
    KALDI_ASSERT(initialized_);
    KALDI_ASSERT(hist.size() + 1 <= ngram_order_);
  
    // Unigram case.
    if (hist.size() == 0) {
      if (word >= num_words_ || unigram_states_[word] == NULL) {
        // If <unk> is defined, then the word sequence should have already been
        // mapped to <unk> is necessary; this is for the case where <unk> is not
        // defined.
        return std::numeric_limits<float>::min();
      } else {
        Int32AndFloat logprob_i(*unigram_states_[word]);
        return logprob_i.f;
      }
    }
  
    // High n-gram orders.
    float logprob = 0.0;
    float backoff_logprob = 0.0;
    int32* state;
    if ((state = GetLmState(hist)) != NULL) {
      int32 child_info;
      int32* child_lm_state = NULL;
      if (GetChildInfo(word, state, &child_info)) {
        DecodeChildInfo(child_info, state, &child_lm_state, &logprob);
        return logprob;
      } else {
        Int32AndFloat backoff_logprob_i(*(state + 1));
        backoff_logprob = backoff_logprob_i.f;
      }
    }
    std::vector<int32> new_hist(hist);
    new_hist.erase(new_hist.begin(), new_hist.begin() + 1);
    return backoff_logprob + GetNgramLogprobRecurse(word, new_hist);
  }
  
  int32* ConstArpaLm::GetLmState(const std::vector<int32>& seq) const {
    KALDI_ASSERT(initialized_);
  
    // No LmState exists for empty word sequence.
    if (seq.size() == 0) return NULL;
  
    // If <unk> is defined, then the word sequence should have already been mapped
    // to <unk> is necessary; this is for the case where <unk> is not defined.
    if (seq[0] >= num_words_ || unigram_states_[seq[0]] == NULL) return NULL;
    int32* parent = unigram_states_[seq[0]];
  
    int32 child_info;
    int32* child_lm_state = NULL;
    float logprob;
    for (int32 i = 1; i < seq.size(); ++i) {
      if (!GetChildInfo(seq[i], parent, &child_info)) {
        return NULL;
      }
      DecodeChildInfo(child_info, parent, &child_lm_state, &logprob);
      if (child_lm_state == NULL) {
        return NULL;
      } else {
        parent = child_lm_state;
      }
    }
    return parent;
  }
  
  bool ConstArpaLm::GetChildInfo(const int32 word,
                                 int32* parent, int32* child_info) const {
    KALDI_ASSERT(initialized_);
  
    KALDI_ASSERT(parent != NULL);
    KALDI_ASSERT(parent >= lm_states_);
    KALDI_ASSERT(child_info != NULL);
  
    KALDI_ASSERT(parent + 2 <= lm_states_end_);
    int32 num_children = *(parent + 2);
    KALDI_ASSERT(parent + 2 + 2 * num_children <= lm_states_end_);
  
    if (num_children == 0) return false;
  
    // A binary search into the children memory block.
    int32 start_index = 1;
    int32 end_index = num_children;
    while (start_index <= end_index) {
      int32 mid_index = round((start_index + end_index) / 2);
      int32 mid_word = *(parent + 1 + 2 * mid_index);
      if (mid_word == word) {
        *child_info = *(parent + 2 + 2 * mid_index);
        return true;
      } else if (mid_word < word) {
        start_index = mid_index + 1;
      } else {
        end_index = mid_index - 1;
      }
    }
  
    return false;
  }
  
  void ConstArpaLm::DecodeChildInfo(const int32 child_info,
                                    int32* parent,
                                    int32** child_lm_state,
                                    float* logprob) const {
    KALDI_ASSERT(initialized_);
  
    KALDI_ASSERT(logprob != NULL);
    if (child_info % 2 == 0) {
      // Child is a leaf, only returns the log probability.
      *child_lm_state = NULL;
      Int32AndFloat logprob_i(child_info);
      *logprob = logprob_i.f;
    } else {
      int32 child_offset = child_info / 2;
      if (child_offset > 0) {
        *child_lm_state = parent + child_offset;
        Int32AndFloat logprob_i(**child_lm_state);
        *logprob = logprob_i.f;
      } else {
        KALDI_ASSERT(-child_offset < overflow_buffer_size_);
        *child_lm_state = overflow_buffer_[-child_offset];
        Int32AndFloat logprob_i(**child_lm_state);
        *logprob = logprob_i.f;
      }
      KALDI_ASSERT(*child_lm_state >= lm_states_);
      KALDI_ASSERT(*child_lm_state <= lm_states_end_);
    }
  }
  
  void ConstArpaLm::WriteArpaRecurse(int32* lm_state,
                                     const std::vector<int32>& seq,
                                     std::vector<ArpaLine> *output) const {
    if (lm_state == NULL) return;
  
    KALDI_ASSERT(lm_state >= lm_states_);
    KALDI_ASSERT(lm_state + 2 <= lm_states_end_);
  
    // Inserts the current LmState to <output>.
    ArpaLine arpa_line;
    arpa_line.words = seq;
    Int32AndFloat logprob_i(*lm_state);
    arpa_line.logprob = logprob_i.f;
    Int32AndFloat backoff_logprob_i(*(lm_state + 1));
    arpa_line.backoff_logprob = backoff_logprob_i.f;
    output->push_back(arpa_line);
  
    // Scans for possible children, and recursively adds child to <output>.
    int32 num_children = *(lm_state + 2);
    KALDI_ASSERT(lm_state + 2 + 2 * num_children <= lm_states_end_);
    for (int32 i = 0; i < num_children; ++i) {
      std::vector<int32> new_seq(seq);
      new_seq.push_back(*(lm_state + 3 + 2 * i));
      int32 child_info = *(lm_state + 4 + 2 * i);
      float logprob;
      int32* child_lm_state = NULL;
      DecodeChildInfo(child_info, lm_state, &child_lm_state, &logprob);
  
      if (child_lm_state == NULL) {
        // Leaf case.
        ArpaLine child_arpa_line;
        child_arpa_line.words = new_seq;
        child_arpa_line.logprob = logprob;
        child_arpa_line.backoff_logprob = 0.0;
        output->push_back(child_arpa_line);
      } else {
        WriteArpaRecurse(child_lm_state, new_seq, output);
      }
    }
  }
  
  void ConstArpaLm::WriteArpa(std::ostream &os) const {
    KALDI_ASSERT(initialized_);
  
    std::vector<ArpaLine> tmp_output;
    for (int32 i = 0; i < num_words_; ++i) {
      if (unigram_states_[i] != NULL) {
        std::vector<int32> seq(1, i);
        WriteArpaRecurse(unigram_states_[i], seq, &tmp_output);
      }
    }
  
    // Sorts ArpaLines and collects head information.
    std::sort(tmp_output.begin(), tmp_output.end());
    std::vector<int32> ngram_count(1, 0);
    for (int32 i = 0; i < tmp_output.size(); ++i) {
      if (tmp_output[i].words.size() >= ngram_count.size()) {
        ngram_count.resize(tmp_output[i].words.size() + 1);
        ngram_count[tmp_output[i].words.size()] = 1;
      } else {
        ngram_count[tmp_output[i].words.size()] += 1;
      }
    }
  
    // Writes the header.
    os << std::endl;
    os << "\\data\\" << std::endl;
    for (int32 i = 1; i < ngram_count.size(); ++i) {
      os << "ngram " << i << "=" << ngram_count[i] << std::endl;
    }
  
    // Writes n-grams.
    int32 current_order = 0;
    for (int32 i = 0; i < tmp_output.size(); ++i) {
      // Beginning of a n-gram section.
      if (tmp_output[i].words.size() != current_order) {
        current_order = tmp_output[i].words.size();
        os << std::endl;
        os << "\\" << current_order << "-grams:" << std::endl;
      }
  
      // Writes logprob.
      os << tmp_output[i].logprob << '\t';
  
      // Writes word sequence.
      for (int32 j = 0; j < tmp_output[i].words.size(); ++j) {
        os << tmp_output[i].words[j];
        if (j != tmp_output[i].words.size() - 1) {
          os << " ";
        }
      }
  
      // Writes backoff_logprob if it is not zero.
      if (tmp_output[i].backoff_logprob != 0.0) {
        os << '\t' << tmp_output[i].backoff_logprob;
      }
      os << std::endl;
    }
  
    os << std::endl << "\\end\\" << std::endl;
  }
  
  ConstArpaLmDeterministicFst::ConstArpaLmDeterministicFst(
      const ConstArpaLm& lm) : lm_(lm) {
    // Creates a history state for <s>.
    std::vector<Label> bos_state(1, lm_.BosSymbol());
    state_to_wseq_.push_back(bos_state);
    wseq_to_state_[bos_state] = 0;
    start_state_ = 0;
  }
  
  fst::StdArc::Weight ConstArpaLmDeterministicFst::Final(StateId s) {
    // At this point, we should have created the state.
    KALDI_ASSERT(static_cast<size_t>(s) < state_to_wseq_.size());
    const std::vector<Label>& wseq = state_to_wseq_[s];
    float logprob = lm_.GetNgramLogprob(lm_.EosSymbol(), wseq);
    return Weight(-logprob);
  }
  
  bool ConstArpaLmDeterministicFst::GetArc(StateId s,
                                           Label ilabel, fst::StdArc *oarc) {
    // At this point, we should have created the state.
    KALDI_ASSERT(static_cast<size_t>(s) < state_to_wseq_.size());
    std::vector<Label> wseq = state_to_wseq_[s];
  
    float logprob = lm_.GetNgramLogprob(ilabel, wseq);
    if (logprob == std::numeric_limits<float>::min()) {
      return false;
    }
  
    // Locates the next state in ConstArpaLm. Note that OOV and backoff have been
    // taken care of in ConstArpaLm.
    wseq.push_back(ilabel);
    while (wseq.size() >= lm_.NgramOrder()) {
      // History state has at most lm_.NgramOrder() -1 words in the state.
      wseq.erase(wseq.begin(), wseq.begin() + 1);
    }
    while (!lm_.HistoryStateExists(wseq)) {
      KALDI_ASSERT(wseq.size() > 0);
      wseq.erase(wseq.begin(), wseq.begin() + 1);
    }
  
    std::pair<const std::vector<Label>, StateId> wseq_state_pair(
        wseq, static_cast<Label>(state_to_wseq_.size()));
  
    // Attemps to insert the current <wseq_state_pair>. If the pair already exists
    // then it returns false.
    typedef MapType::iterator IterType;
    std::pair<IterType, bool> result = wseq_to_state_.insert(wseq_state_pair);
  
    // If the pair was just inserted, then also add it to <state_to_wseq_>.
    if (result.second == true)
      state_to_wseq_.push_back(wseq);
  
    // Creates the arc.
    oarc->ilabel = ilabel;
    oarc->olabel = ilabel;
    oarc->nextstate = result.first->second;
    oarc->weight = Weight(-logprob);
  
    return true;
  }
  
  bool BuildConstArpaLm(const ArpaParseOptions& options,
                        const std::string& arpa_rxfilename,
                        const std::string& const_arpa_wxfilename) {
    ConstArpaLmBuilder lm_builder(options);
    KALDI_LOG << "Reading " << arpa_rxfilename;
    Input ki(arpa_rxfilename);
    lm_builder.Read(ki.Stream());
    WriteKaldiObject(lm_builder, const_arpa_wxfilename, true);
    return true;
  }
  
  }  // namespace kaldi