Blame view
src/matrix/kaldi-matrix.h
43.6 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 |
// matrix/kaldi-matrix.h // Copyright 2009-2011 Ondrej Glembek; Microsoft Corporation; Lukas Burget; // Saarland University; Petr Schwarz; Yanmin Qian; // Karel Vesely; Go Vivace Inc.; Haihua Xu // 2017 Shiyin Kang // 2019 Yiwen Shao // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_MATRIX_KALDI_MATRIX_H_ #define KALDI_MATRIX_KALDI_MATRIX_H_ 1 #include <algorithm> #include "matrix/matrix-common.h" namespace kaldi { /// @{ \addtogroup matrix_funcs_scalar /// We need to declare this here as it will be a friend function. /// tr(A B), or tr(A B^T). template<typename Real> Real TraceMatMat(const MatrixBase<Real> &A, const MatrixBase<Real> &B, MatrixTransposeType trans = kNoTrans); /// @} /// \addtogroup matrix_group /// @{ /// Base class which provides matrix operations not involving resizing /// or allocation. Classes Matrix and SubMatrix inherit from it and take care /// of allocation and resizing. template<typename Real> class MatrixBase { public: // so this child can access protected members of other instances. friend class Matrix<Real>; // friend declarations for CUDA matrices (see ../cudamatrix/) friend class CuMatrixBase<Real>; friend class CuMatrix<Real>; friend class CuSubMatrix<Real>; friend class CuPackedMatrix<Real>; friend class PackedMatrix<Real>; friend class SparseMatrix<Real>; friend class SparseMatrix<float>; friend class SparseMatrix<double>; /// Returns number of rows (or zero for empty matrix). inline MatrixIndexT NumRows() const { return num_rows_; } /// Returns number of columns (or zero for empty matrix). inline MatrixIndexT NumCols() const { return num_cols_; } /// Stride (distance in memory between each row). Will be >= NumCols. inline MatrixIndexT Stride() const { return stride_; } /// Returns size in bytes of the data held by the matrix. size_t SizeInBytes() const { return static_cast<size_t>(num_rows_) * static_cast<size_t>(stride_) * sizeof(Real); } /// Gives pointer to raw data (const). inline const Real* Data() const { return data_; } /// Gives pointer to raw data (non-const). inline Real* Data() { return data_; } /// Returns pointer to data for one row (non-const) inline Real* RowData(MatrixIndexT i) { KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) < static_cast<UnsignedMatrixIndexT>(num_rows_)); return data_ + i * stride_; } /// Returns pointer to data for one row (const) inline const Real* RowData(MatrixIndexT i) const { KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) < static_cast<UnsignedMatrixIndexT>(num_rows_)); return data_ + i * stride_; } /// Indexing operator, non-const /// (only checks sizes if compiled with -DKALDI_PARANOID) inline Real& operator() (MatrixIndexT r, MatrixIndexT c) { KALDI_PARANOID_ASSERT(static_cast<UnsignedMatrixIndexT>(r) < static_cast<UnsignedMatrixIndexT>(num_rows_) && static_cast<UnsignedMatrixIndexT>(c) < static_cast<UnsignedMatrixIndexT>(num_cols_)); return *(data_ + r * stride_ + c); } /// Indexing operator, provided for ease of debugging (gdb doesn't work /// with parenthesis operator). Real &Index (MatrixIndexT r, MatrixIndexT c) { return (*this)(r, c); } /// Indexing operator, const /// (only checks sizes if compiled with -DKALDI_PARANOID) inline const Real operator() (MatrixIndexT r, MatrixIndexT c) const { KALDI_PARANOID_ASSERT(static_cast<UnsignedMatrixIndexT>(r) < static_cast<UnsignedMatrixIndexT>(num_rows_) && static_cast<UnsignedMatrixIndexT>(c) < static_cast<UnsignedMatrixIndexT>(num_cols_)); return *(data_ + r * stride_ + c); } /* Basic setting-to-special values functions. */ /// Sets matrix to zero. void SetZero(); /// Sets all elements to a specific value. void Set(Real); /// Sets to zero, except ones along diagonal [for non-square matrices too] void SetUnit(); /// Sets to random values of a normal distribution void SetRandn(); /// Sets to numbers uniformly distributed on (0, 1) void SetRandUniform(); /* Copying functions. These do not resize the matrix! */ /// Copy given matrix. (no resize is done). template<typename OtherReal> void CopyFromMat(const MatrixBase<OtherReal> & M, MatrixTransposeType trans = kNoTrans); /// Copy from compressed matrix. void CopyFromMat(const CompressedMatrix &M); /// Copy given spmatrix. (no resize is done). template<typename OtherReal> void CopyFromSp(const SpMatrix<OtherReal> &M); /// Copy given tpmatrix. (no resize is done). template<typename OtherReal> void CopyFromTp(const TpMatrix<OtherReal> &M, MatrixTransposeType trans = kNoTrans); /// Copy from CUDA matrix. Implemented in ../cudamatrix/cu-matrix.h template<typename OtherReal> void CopyFromMat(const CuMatrixBase<OtherReal> &M, MatrixTransposeType trans = kNoTrans); /// This function has two modes of operation. If v.Dim() == NumRows() * /// NumCols(), then treats the vector as a row-by-row concatenation of a /// matrix and copies to *this. /// if v.Dim() == NumCols(), it sets each row of *this to a copy of v. void CopyRowsFromVec(const VectorBase<Real> &v); /// This version of CopyRowsFromVec is implemented in ../cudamatrix/cu-vector.cc void CopyRowsFromVec(const CuVectorBase<Real> &v); template<typename OtherReal> void CopyRowsFromVec(const VectorBase<OtherReal> &v); /// Copies vector into matrix, column-by-column. /// Note that rv.Dim() must either equal NumRows()*NumCols() or NumRows(); /// this has two modes of operation. void CopyColsFromVec(const VectorBase<Real> &v); /// Copy vector into specific column of matrix. void CopyColFromVec(const VectorBase<Real> &v, const MatrixIndexT col); /// Copy vector into specific row of matrix. void CopyRowFromVec(const VectorBase<Real> &v, const MatrixIndexT row); /// Copy vector into diagonal of matrix. void CopyDiagFromVec(const VectorBase<Real> &v); /* Accessing of sub-parts of the matrix. */ /// Return specific row of matrix [const]. inline const SubVector<Real> Row(MatrixIndexT i) const { KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) < static_cast<UnsignedMatrixIndexT>(num_rows_)); return SubVector<Real>(data_ + (i * stride_), NumCols()); } /// Return specific row of matrix. inline SubVector<Real> Row(MatrixIndexT i) { KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(i) < static_cast<UnsignedMatrixIndexT>(num_rows_)); return SubVector<Real>(data_ + (i * stride_), NumCols()); } /// Return a sub-part of matrix. inline SubMatrix<Real> Range(const MatrixIndexT row_offset, const MatrixIndexT num_rows, const MatrixIndexT col_offset, const MatrixIndexT num_cols) const { return SubMatrix<Real>(*this, row_offset, num_rows, col_offset, num_cols); } inline SubMatrix<Real> RowRange(const MatrixIndexT row_offset, const MatrixIndexT num_rows) const { return SubMatrix<Real>(*this, row_offset, num_rows, 0, num_cols_); } inline SubMatrix<Real> ColRange(const MatrixIndexT col_offset, const MatrixIndexT num_cols) const { return SubMatrix<Real>(*this, 0, num_rows_, col_offset, num_cols); } /* Various special functions. */ /// Returns sum of all elements in matrix. Real Sum() const; /// Returns trace of matrix. Real Trace(bool check_square = true) const; // If check_square = true, will crash if matrix is not square. /// Returns maximum element of matrix. Real Max() const; /// Returns minimum element of matrix. Real Min() const; /// Element by element multiplication with a given matrix. void MulElements(const MatrixBase<Real> &A); /// Divide each element by the corresponding element of a given matrix. void DivElements(const MatrixBase<Real> &A); /// Multiply each element with a scalar value. void Scale(Real alpha); /// Set, element-by-element, *this = max(*this, A) void Max(const MatrixBase<Real> &A); /// Set, element-by-element, *this = min(*this, A) void Min(const MatrixBase<Real> &A); /// Equivalent to (*this) = (*this) * diag(scale). Scaling /// each column by a scalar taken from that dimension of the vector. void MulColsVec(const VectorBase<Real> &scale); /// Equivalent to (*this) = diag(scale) * (*this). Scaling /// each row by a scalar taken from that dimension of the vector. void MulRowsVec(const VectorBase<Real> &scale); /// Divide each row into src.NumCols() equal groups, and then scale i'th row's /// j'th group of elements by src(i, j). Requires src.NumRows() == /// this->NumRows() and this->NumCols() % src.NumCols() == 0. void MulRowsGroupMat(const MatrixBase<Real> &src); /// Returns logdet of matrix. Real LogDet(Real *det_sign = NULL) const; /// matrix inverse. /// if inverse_needed = false, will fill matrix with garbage. /// (only useful if logdet wanted). void Invert(Real *log_det = NULL, Real *det_sign = NULL, bool inverse_needed = true); /// matrix inverse [double]. /// if inverse_needed = false, will fill matrix with garbage /// (only useful if logdet wanted). /// Does inversion in double precision even if matrix was not double. void InvertDouble(Real *LogDet = NULL, Real *det_sign = NULL, bool inverse_needed = true); /// Inverts all the elements of the matrix void InvertElements(); /// Transpose the matrix. This one is only /// applicable to square matrices (the one in the /// Matrix child class works also for non-square. void Transpose(); /// Copies column r from column indices[r] of src. /// As a special case, if indexes[i] == -1, sets column i to zero. /// all elements of "indices" must be in [-1, src.NumCols()-1], /// and src.NumRows() must equal this.NumRows() void CopyCols(const MatrixBase<Real> &src, const MatrixIndexT *indices); /// Copies row r from row indices[r] of src (does nothing /// As a special case, if indexes[i] == -1, sets row i to zero. /// all elements of "indices" must be in [-1, src.NumRows()-1], /// and src.NumCols() must equal this.NumCols() void CopyRows(const MatrixBase<Real> &src, const MatrixIndexT *indices); /// Add column indices[r] of src to column r. /// As a special case, if indexes[i] == -1, skip column i /// indices.size() must equal this->NumCols(), /// all elements of "reorder" must be in [-1, src.NumCols()-1], /// and src.NumRows() must equal this.NumRows() void AddCols(const MatrixBase<Real> &src, const MatrixIndexT *indices); /// Copies row r of this matrix from an array of floats at the location given /// by src[r]. If any src[r] is NULL then this.Row(r) will be set to zero. /// Note: we are using "pointer to const pointer to const object" for "src", /// because we may create "src" by calling Data() of const CuArray void CopyRows(const Real *const *src); /// Copies row r of this matrix to the array of floats at the location given /// by dst[r]. If dst[r] is NULL, does not copy anywhere. Requires that none /// of the memory regions pointed to by the pointers in "dst" overlap (e.g. /// none of the pointers should be the same). void CopyToRows(Real *const *dst) const; /// Does for each row r, this.Row(r) += alpha * src.row(indexes[r]). /// If indexes[r] < 0, does not add anything. all elements of "indexes" must /// be in [-1, src.NumRows()-1], and src.NumCols() must equal this.NumCols(). void AddRows(Real alpha, const MatrixBase<Real> &src, const MatrixIndexT *indexes); /// Does for each row r, this.Row(r) += alpha * src[r], treating src[r] as the /// beginning of a region of memory representing a vector of floats, of the /// same length as this.NumCols(). If src[r] is NULL, does not add anything. void AddRows(Real alpha, const Real *const *src); /// For each row r of this matrix, adds it (times alpha) to the array of /// floats at the location given by dst[r]. If dst[r] is NULL, does not do /// anything for that row. Requires that none of the memory regions pointed /// to by the pointers in "dst" overlap (e.g. none of the pointers should be /// the same). void AddToRows(Real alpha, Real *const *dst) const; /// For each row i of *this, adds this->Row(i) to /// dst->Row(indexes(i)) if indexes(i) >= 0, else do nothing. /// Requires that all the indexes[i] that are >= 0 /// be distinct, otherwise the behavior is undefined. void AddToRows(Real alpha, const MatrixIndexT *indexes, MatrixBase<Real> *dst) const; inline void ApplyPow(Real power) { this -> Pow(*this, power); } inline void ApplyPowAbs(Real power, bool include_sign=false) { this -> PowAbs(*this, power, include_sign); } inline void ApplyHeaviside() { this -> Heaviside(*this); } inline void ApplyFloor(Real floor_val) { this -> Floor(*this, floor_val); } inline void ApplyCeiling(Real ceiling_val) { this -> Ceiling(*this, ceiling_val); } inline void ApplyExp() { this -> Exp(*this); } inline void ApplyExpSpecial() { this -> ExpSpecial(*this); } inline void ApplyExpLimited(Real lower_limit, Real upper_limit) { this -> ExpLimited(*this, lower_limit, upper_limit); } inline void ApplyLog() { this -> Log(*this); } /// Eigenvalue Decomposition of a square NxN matrix into the form (*this) = P D /// P^{-1}. Be careful: the relationship of D to the eigenvalues we output is /// slightly complicated, due to the need for P to be real. In the symmetric /// case D is diagonal and real, but in /// the non-symmetric case there may be complex-conjugate pairs of eigenvalues. /// In this case, for the equation (*this) = P D P^{-1} to hold, D must actually /// be block diagonal, with 2x2 blocks corresponding to any such pairs. If a /// pair is lambda +- i*mu, D will have a corresponding 2x2 block /// [lambda, mu; -mu, lambda]. /// Note that if the input matrix (*this) is non-invertible, P may not be invertible /// so in this case instead of the equation (*this) = P D P^{-1} holding, we have /// instead (*this) P = P D. /// /// The non-member function CreateEigenvalueMatrix creates D from eigs_real and eigs_imag. void Eig(MatrixBase<Real> *P, VectorBase<Real> *eigs_real, VectorBase<Real> *eigs_imag) const; /// The Power method attempts to take the matrix to a power using a method that /// works in general for fractional and negative powers. The input matrix must /// be invertible and have reasonable condition (or we don't guarantee the /// results. The method is based on the eigenvalue decomposition. It will /// return false and leave the matrix unchanged, if at entry the matrix had /// real negative eigenvalues (or if it had zero eigenvalues and the power was /// negative). bool Power(Real pow); /** Singular value decomposition Major limitations: For nonsquare matrices, we assume m>=n (NumRows >= NumCols), and we return the "skinny" Svd, i.e. the matrix in the middle is diagonal, and the one on the left is rectangular. In Svd, *this = U*diag(S)*Vt. Null pointers for U and/or Vt at input mean we do not want that output. We expect that S.Dim() == m, U is either NULL or m by n, and v is either NULL or n by n. The singular values are not sorted (use SortSvd for that). */ void DestructiveSvd(VectorBase<Real> *s, MatrixBase<Real> *U, MatrixBase<Real> *Vt); // Destroys calling matrix. /// Compute SVD (*this) = U diag(s) Vt. Note that the V in the call is already /// transposed; the normal formulation is U diag(s) V^T. /// Null pointers for U or V mean we don't want that output (this saves /// compute). The singular values are not sorted (use SortSvd for that). void Svd(VectorBase<Real> *s, MatrixBase<Real> *U, MatrixBase<Real> *Vt) const; /// Compute SVD but only retain the singular values. void Svd(VectorBase<Real> *s) const { Svd(s, NULL, NULL); } /// Returns smallest singular value. Real MinSingularValue() const { Vector<Real> tmp(std::min(NumRows(), NumCols())); Svd(&tmp); return tmp.Min(); } void TestUninitialized() const; // This function is designed so that if any element // if the matrix is uninitialized memory, valgrind will complain. /// Returns condition number by computing Svd. Works even if cols > rows. /// Returns infinity if all singular values are zero. Real Cond() const; /// Returns true if matrix is Symmetric. bool IsSymmetric(Real cutoff = 1.0e-05) const; // replace magic number /// Returns true if matrix is Diagonal. bool IsDiagonal(Real cutoff = 1.0e-05) const; // replace magic number /// Returns true if the matrix is all zeros, except for ones on diagonal. (it /// does not have to be square). More specifically, this function returns /// false if for any i, j, (*this)(i, j) differs by more than cutoff from the /// expression (i == j ? 1 : 0). bool IsUnit(Real cutoff = 1.0e-05) const; // replace magic number /// Returns true if matrix is all zeros. bool IsZero(Real cutoff = 1.0e-05) const; // replace magic number /// Frobenius norm, which is the sqrt of sum of square elements. Same as Schatten 2-norm, /// or just "2-norm". Real FrobeniusNorm() const; /// Returns true if ((*this)-other).FrobeniusNorm() /// <= tol * (*this).FrobeniusNorm(). bool ApproxEqual(const MatrixBase<Real> &other, float tol = 0.01) const; /// Tests for exact equality. It's usually preferable to use ApproxEqual. bool Equal(const MatrixBase<Real> &other) const; /// largest absolute value. Real LargestAbsElem() const; // largest absolute value. /// Returns log(sum(exp())) without exp overflow /// If prune > 0.0, it uses a pruning beam, discarding /// terms less than (max - prune). Note: in future /// we may change this so that if prune = 0.0, it takes /// the max, so use -1 if you don't want to prune. Real LogSumExp(Real prune = -1.0) const; /// Apply soft-max to the collection of all elements of the /// matrix and return normalizer (log sum of exponentials). Real ApplySoftMax(); /// Set each element to the sigmoid of the corresponding element of "src". void Sigmoid(const MatrixBase<Real> &src); /// Sets each element to the Heaviside step function (x > 0 ? 1 : 0) of the /// corresponding element in "src". Note: in general you can make different /// choices for x = 0, but for now please leave it as it (i.e. returning zero) /// because it affects the RectifiedLinearComponent in the neural net code. void Heaviside(const MatrixBase<Real> &src); void Exp(const MatrixBase<Real> &src); void Pow(const MatrixBase<Real> &src, Real power); void Log(const MatrixBase<Real> &src); /// Apply power to the absolute value of each element. /// If include_sign is true, the result will be multiplied with /// the sign of the input value. /// If the power is negative and the input to the power is zero, /// The output will be set zero. If include_sign is true, it will /// multiply the result by the sign of the input. void PowAbs(const MatrixBase<Real> &src, Real power, bool include_sign=false); void Floor(const MatrixBase<Real> &src, Real floor_val); void Ceiling(const MatrixBase<Real> &src, Real ceiling_val); /// For each element x of the matrix, set it to /// (x < 0 ? exp(x) : x + 1). This function is used /// in our RNNLM training. void ExpSpecial(const MatrixBase<Real> &src); /// This is equivalent to running: /// Floor(src, lower_limit); /// Ceiling(src, upper_limit); /// Exp(src) void ExpLimited(const MatrixBase<Real> &src, Real lower_limit, Real upper_limit); /// Set each element to y = log(1 + exp(x)) void SoftHinge(const MatrixBase<Real> &src); /// Apply the function y(i) = (sum_{j = i*G}^{(i+1)*G-1} x_j^(power))^(1 / p). /// Requires src.NumRows() == this->NumRows() and src.NumCols() % this->NumCols() == 0. void GroupPnorm(const MatrixBase<Real> &src, Real power); /// Calculate derivatives for the GroupPnorm function above... /// if "input" is the input to the GroupPnorm function above (i.e. the "src" variable), /// and "output" is the result of the computation (i.e. the "this" of that function /// call), and *this has the same dimension as "input", then it sets each element /// of *this to the derivative d(output-elem)/d(input-elem) for each element of "input", where /// "output-elem" is whichever element of output depends on that input element. void GroupPnormDeriv(const MatrixBase<Real> &input, const MatrixBase<Real> &output, Real power); /// Apply the function y(i) = (max_{j = i*G}^{(i+1)*G-1} x_j /// Requires src.NumRows() == this->NumRows() and src.NumCols() % this->NumCols() == 0. void GroupMax(const MatrixBase<Real> &src); /// Calculate derivatives for the GroupMax function above, where /// "input" is the input to the GroupMax function above (i.e. the "src" variable), /// and "output" is the result of the computation (i.e. the "this" of that function /// call), and *this must have the same dimension as "input". Each element /// of *this will be set to 1 if the corresponding input equals the output of /// the group, and 0 otherwise. The equals the function derivative where it is /// defined (it's not defined where multiple inputs in the group are equal to the output). void GroupMaxDeriv(const MatrixBase<Real> &input, const MatrixBase<Real> &output); /// Set each element to the tanh of the corresponding element of "src". void Tanh(const MatrixBase<Real> &src); // Function used in backpropagating derivatives of the sigmoid function: // element-by-element, set *this = diff * value * (1.0 - value). void DiffSigmoid(const MatrixBase<Real> &value, const MatrixBase<Real> &diff); // Function used in backpropagating derivatives of the tanh function: // element-by-element, set *this = diff * (1.0 - value^2). void DiffTanh(const MatrixBase<Real> &value, const MatrixBase<Real> &diff); /** Uses Svd to compute the eigenvalue decomposition of a symmetric positive * semi-definite matrix: (*this) = rP * diag(rS) * rP^T, with rP an * orthogonal matrix so rP^{-1} = rP^T. Throws exception if input was not * positive semi-definite (check_thresh controls how stringent the check is; * set it to 2 to ensure it won't ever complain, but it will zero out negative * dimensions in your matrix. * * Caution: if you want the eigenvalues, it may make more sense to convert to * SpMatrix and use Eig() function there, which uses eigenvalue decomposition * directly rather than SVD. */ void SymPosSemiDefEig(VectorBase<Real> *s, MatrixBase<Real> *P, Real check_thresh = 0.001); friend Real kaldi::TraceMatMat<Real>(const MatrixBase<Real> &A, const MatrixBase<Real> &B, MatrixTransposeType trans); // tr (A B) // so it can get around const restrictions on the pointer to data_. friend class SubMatrix<Real>; /// Add a scalar to each element void Add(const Real alpha); /// Add a scalar to each diagonal element. void AddToDiag(const Real alpha); /// *this += alpha * a * b^T template<typename OtherReal> void AddVecVec(const Real alpha, const VectorBase<OtherReal> &a, const VectorBase<OtherReal> &b); /// [each row of *this] += alpha * v template<typename OtherReal> void AddVecToRows(const Real alpha, const VectorBase<OtherReal> &v); /// [each col of *this] += alpha * v template<typename OtherReal> void AddVecToCols(const Real alpha, const VectorBase<OtherReal> &v); /// *this += alpha * M [or M^T] void AddMat(const Real alpha, const MatrixBase<Real> &M, MatrixTransposeType transA = kNoTrans); /// *this += alpha * A [or A^T]. void AddSmat(Real alpha, const SparseMatrix<Real> &A, MatrixTransposeType trans = kNoTrans); /// (*this) = alpha * op(A) * B + beta * (*this), where A is sparse. /// Multiplication of sparse with dense matrix. See also AddMatSmat. void AddSmatMat(Real alpha, const SparseMatrix<Real> &A, MatrixTransposeType transA, const MatrixBase<Real> &B, Real beta); /// (*this) = alpha * A * op(B) + beta * (*this), where B is sparse /// and op(B) is either B or trans(B) depending on the 'transB' argument. /// This is multiplication of a dense by a sparse matrix. See also /// AddSmatMat. void AddMatSmat(Real alpha, const MatrixBase<Real> &A, const SparseMatrix<Real> &B, MatrixTransposeType transB, Real beta); /// *this = beta * *this + alpha * M M^T, for symmetric matrices. It only /// updates the lower triangle of *this. It will leave the matrix asymmetric; /// if you need it symmetric as a regular matrix, do CopyLowerToUpper(). void SymAddMat2(const Real alpha, const MatrixBase<Real> &M, MatrixTransposeType transA, Real beta); /// *this = beta * *this + alpha * diag(v) * M [or M^T]. /// The same as adding M but scaling each row M_i by v(i). void AddDiagVecMat(const Real alpha, const VectorBase<Real> &v, const MatrixBase<Real> &M, MatrixTransposeType transM, Real beta = 1.0); /// *this = beta * *this + alpha * M [or M^T] * diag(v) /// The same as adding M but scaling each column M_j by v(j). void AddMatDiagVec(const Real alpha, const MatrixBase<Real> &M, MatrixTransposeType transM, VectorBase<Real> &v, Real beta = 1.0); /// *this = beta * *this + alpha * A .* B (.* element by element multiplication) void AddMatMatElements(const Real alpha, const MatrixBase<Real>& A, const MatrixBase<Real>& B, const Real beta); /// *this += alpha * S template<typename OtherReal> void AddSp(const Real alpha, const SpMatrix<OtherReal> &S); void AddMatMat(const Real alpha, const MatrixBase<Real>& A, MatrixTransposeType transA, const MatrixBase<Real>& B, MatrixTransposeType transB, const Real beta); /// *this = a * b / c (by element; when c = 0, *this = a) void SetMatMatDivMat(const MatrixBase<Real>& A, const MatrixBase<Real>& B, const MatrixBase<Real>& C); /// A version of AddMatMat specialized for when the second argument /// contains a lot of zeroes. void AddMatSmat(const Real alpha, const MatrixBase<Real>& A, MatrixTransposeType transA, const MatrixBase<Real>& B, MatrixTransposeType transB, const Real beta); /// A version of AddMatMat specialized for when the first argument /// contains a lot of zeroes. void AddSmatMat(const Real alpha, const MatrixBase<Real>& A, MatrixTransposeType transA, const MatrixBase<Real>& B, MatrixTransposeType transB, const Real beta); /// this <-- beta*this + alpha*A*B*C. void AddMatMatMat(const Real alpha, const MatrixBase<Real>& A, MatrixTransposeType transA, const MatrixBase<Real>& B, MatrixTransposeType transB, const MatrixBase<Real>& C, MatrixTransposeType transC, const Real beta); /// this <-- beta*this + alpha*SpA*B. // This and the routines below are really // stubs that need to be made more efficient. void AddSpMat(const Real alpha, const SpMatrix<Real>& A, const MatrixBase<Real>& B, MatrixTransposeType transB, const Real beta) { Matrix<Real> M(A); return AddMatMat(alpha, M, kNoTrans, B, transB, beta); } /// this <-- beta*this + alpha*A*B. void AddTpMat(const Real alpha, const TpMatrix<Real>& A, MatrixTransposeType transA, const MatrixBase<Real>& B, MatrixTransposeType transB, const Real beta) { Matrix<Real> M(A); return AddMatMat(alpha, M, transA, B, transB, beta); } /// this <-- beta*this + alpha*A*B. void AddMatSp(const Real alpha, const MatrixBase<Real>& A, MatrixTransposeType transA, const SpMatrix<Real>& B, const Real beta) { Matrix<Real> M(B); return AddMatMat(alpha, A, transA, M, kNoTrans, beta); } /// this <-- beta*this + alpha*A*B*C. void AddSpMatSp(const Real alpha, const SpMatrix<Real> &A, const MatrixBase<Real>& B, MatrixTransposeType transB, const SpMatrix<Real>& C, const Real beta) { Matrix<Real> M(A), N(C); return AddMatMatMat(alpha, M, kNoTrans, B, transB, N, kNoTrans, beta); } /// this <-- beta*this + alpha*A*B. void AddMatTp(const Real alpha, const MatrixBase<Real>& A, MatrixTransposeType transA, const TpMatrix<Real>& B, MatrixTransposeType transB, const Real beta) { Matrix<Real> M(B); return AddMatMat(alpha, A, transA, M, transB, beta); } /// this <-- beta*this + alpha*A*B. void AddTpTp(const Real alpha, const TpMatrix<Real>& A, MatrixTransposeType transA, const TpMatrix<Real>& B, MatrixTransposeType transB, const Real beta) { Matrix<Real> M(A), N(B); return AddMatMat(alpha, M, transA, N, transB, beta); } /// this <-- beta*this + alpha*A*B. // This one is more efficient, not like the others above. void AddSpSp(const Real alpha, const SpMatrix<Real>& A, const SpMatrix<Real>& B, const Real beta); /// Copy lower triangle to upper triangle (symmetrize) void CopyLowerToUpper(); /// Copy upper triangle to lower triangle (symmetrize) void CopyUpperToLower(); /// This function orthogonalizes the rows of a matrix using the Gram-Schmidt /// process. It is only applicable if NumRows() <= NumCols(). It will use /// random number generation to fill in rows with something nonzero, in cases /// where the original matrix was of deficient row rank. void OrthogonalizeRows(); /// stream read. /// Use instead of stream<<*this, if you want to add to existing contents. // Will throw exception on failure. void Read(std::istream & in, bool binary, bool add = false); /// write to stream. void Write(std::ostream & out, bool binary) const; // Below is internal methods for Svd, user does not have to know about this. #if !defined(HAVE_ATLAS) && !defined(USE_KALDI_SVD) // protected: // Should be protected but used directly in testing routine. // destroys *this! void LapackGesvd(VectorBase<Real> *s, MatrixBase<Real> *U, MatrixBase<Real> *Vt); #else protected: // destroys *this! bool JamaSvd(VectorBase<Real> *s, MatrixBase<Real> *U, MatrixBase<Real> *V); #endif protected: /// Initializer, callable only from child. explicit MatrixBase(Real *data, MatrixIndexT cols, MatrixIndexT rows, MatrixIndexT stride) : data_(data), num_cols_(cols), num_rows_(rows), stride_(stride) { KALDI_ASSERT_IS_FLOATING_TYPE(Real); } /// Initializer, callable only from child. /// Empty initializer, for un-initialized matrix. explicit MatrixBase(): data_(NULL) { KALDI_ASSERT_IS_FLOATING_TYPE(Real); } // Make sure pointers to MatrixBase cannot be deleted. ~MatrixBase() { } /// A workaround that allows SubMatrix to get a pointer to non-const data /// for const Matrix. Unfortunately C++ does not allow us to declare a /// "public const" inheritance or anything like that, so it would require /// a lot of work to make the SubMatrix class totally const-correct-- /// we would have to override many of the Matrix functions. inline Real* Data_workaround() const { return data_; } /// data memory area Real* data_; /// these attributes store the real matrix size as it is stored in memory /// including memalignment MatrixIndexT num_cols_; /// < Number of columns MatrixIndexT num_rows_; /// < Number of rows /** True number of columns for the internal matrix. This number may differ * from num_cols_ as memory alignment might be used. */ MatrixIndexT stride_; private: KALDI_DISALLOW_COPY_AND_ASSIGN(MatrixBase); }; /// A class for storing matrices. template<typename Real> class Matrix : public MatrixBase<Real> { public: /// Empty constructor. Matrix(); /// Basic constructor. Matrix(const MatrixIndexT r, const MatrixIndexT c, MatrixResizeType resize_type = kSetZero, MatrixStrideType stride_type = kDefaultStride): MatrixBase<Real>() { Resize(r, c, resize_type, stride_type); } /// Copy constructor from CUDA matrix /// This is defined in ../cudamatrix/cu-matrix.h template<typename OtherReal> explicit Matrix(const CuMatrixBase<OtherReal> &cu, MatrixTransposeType trans = kNoTrans); /// Swaps the contents of *this and *other. Shallow swap. void Swap(Matrix<Real> *other); /// Defined in ../cudamatrix/cu-matrix.cc void Swap(CuMatrix<Real> *mat); /// Constructor from any MatrixBase. Can also copy with transpose. /// Allocates new memory. explicit Matrix(const MatrixBase<Real> & M, MatrixTransposeType trans = kNoTrans); /// Same as above, but need to avoid default copy constructor. Matrix(const Matrix<Real> & M); // (cannot make explicit) /// Copy constructor: as above, but from another type. template<typename OtherReal> explicit Matrix(const MatrixBase<OtherReal> & M, MatrixTransposeType trans = kNoTrans); /// Copy constructor taking SpMatrix... /// It is symmetric, so no option for transpose, and NumRows == Cols template<typename OtherReal> explicit Matrix(const SpMatrix<OtherReal> & M) : MatrixBase<Real>() { Resize(M.NumRows(), M.NumRows(), kUndefined); this->CopyFromSp(M); } /// Constructor from CompressedMatrix explicit Matrix(const CompressedMatrix &C); /// Copy constructor taking TpMatrix... template <typename OtherReal> explicit Matrix(const TpMatrix<OtherReal> & M, MatrixTransposeType trans = kNoTrans) : MatrixBase<Real>() { if (trans == kNoTrans) { Resize(M.NumRows(), M.NumCols(), kUndefined); this->CopyFromTp(M); } else { Resize(M.NumCols(), M.NumRows(), kUndefined); this->CopyFromTp(M, kTrans); } } /// read from stream. // Unlike one in base, allows resizing. void Read(std::istream & in, bool binary, bool add = false); /// Remove a specified row. void RemoveRow(MatrixIndexT i); /// Transpose the matrix. Works for non-square /// matrices as well as square ones. void Transpose(); /// Distructor to free matrices. ~Matrix() { Destroy(); } /// Sets matrix to a specified size (zero is OK as long as both r and c are /// zero). The value of the new data depends on resize_type: /// -if kSetZero, the new data will be zero /// -if kUndefined, the new data will be undefined /// -if kCopyData, the new data will be the same as the old data in any /// shared positions, and zero elsewhere. /// /// You can set stride_type to kStrideEqualNumCols to force the stride /// to equal the number of columns; by default it is set so that the stride /// in bytes is a multiple of 16. /// /// This function takes time proportional to the number of data elements. void Resize(const MatrixIndexT r, const MatrixIndexT c, MatrixResizeType resize_type = kSetZero, MatrixStrideType stride_type = kDefaultStride); /// Assignment operator that takes MatrixBase. Matrix<Real> &operator = (const MatrixBase<Real> &other) { if (MatrixBase<Real>::NumRows() != other.NumRows() || MatrixBase<Real>::NumCols() != other.NumCols()) Resize(other.NumRows(), other.NumCols(), kUndefined); MatrixBase<Real>::CopyFromMat(other); return *this; } /// Assignment operator. Needed for inclusion in std::vector. Matrix<Real> &operator = (const Matrix<Real> &other) { if (MatrixBase<Real>::NumRows() != other.NumRows() || MatrixBase<Real>::NumCols() != other.NumCols()) Resize(other.NumRows(), other.NumCols(), kUndefined); MatrixBase<Real>::CopyFromMat(other); return *this; } private: /// Deallocates memory and sets to empty matrix (dimension 0, 0). void Destroy(); /// Init assumes the current class contents are invalid (i.e. junk or have /// already been freed), and it sets the matrix to newly allocated memory with /// the specified number of rows and columns. r == c == 0 is acceptable. The data /// memory contents will be undefined. void Init(const MatrixIndexT r, const MatrixIndexT c, const MatrixStrideType stride_type); }; /// @} end "addtogroup matrix_group" /// \addtogroup matrix_funcs_io /// @{ /// A structure containing the HTK header. /// [TODO: change the style of the variables to Kaldi-compliant] struct HtkHeader { /// Number of samples. int32 mNSamples; /// Sample period. int32 mSamplePeriod; /// Sample size int16 mSampleSize; /// Sample kind. uint16 mSampleKind; }; // Read HTK formatted features from file into matrix. template<typename Real> bool ReadHtk(std::istream &is, Matrix<Real> *M, HtkHeader *header_ptr); // Write (HTK format) features to file from matrix. template<typename Real> bool WriteHtk(std::ostream &os, const MatrixBase<Real> &M, HtkHeader htk_hdr); // Write (CMUSphinx format) features to file from matrix. template<typename Real> bool WriteSphinx(std::ostream &os, const MatrixBase<Real> &M); /// @} end of "addtogroup matrix_funcs_io" /** Sub-matrix representation. Can work with sub-parts of a matrix using this class. Note that SubMatrix is not very const-correct-- it allows you to change the contents of a const Matrix. Be careful! */ template<typename Real> class SubMatrix : public MatrixBase<Real> { public: // Initialize a SubMatrix from part of a matrix; this is // a bit like A(b:c, d:e) in Matlab. // This initializer is against the proper semantics of "const", since // SubMatrix can change its contents. It would be hard to implement // a "const-safe" version of this class. SubMatrix(const MatrixBase<Real>& T, const MatrixIndexT ro, // row offset, 0 < ro < NumRows() const MatrixIndexT r, // number of rows, r > 0 const MatrixIndexT co, // column offset, 0 < co < NumCols() const MatrixIndexT c); // number of columns, c > 0 // This initializer is mostly intended for use in CuMatrix and related // classes. Be careful! SubMatrix(Real *data, MatrixIndexT num_rows, MatrixIndexT num_cols, MatrixIndexT stride); ~SubMatrix<Real>() {} /// This type of constructor is needed for Range() to work [in Matrix base /// class]. Cannot make it explicit. SubMatrix<Real> (const SubMatrix &other): MatrixBase<Real> (other.data_, other.num_cols_, other.num_rows_, other.stride_) {} private: /// Disallow assignment. SubMatrix<Real> &operator = (const SubMatrix<Real> &other); }; /// @} End of "addtogroup matrix_funcs_io". /// \addtogroup matrix_funcs_scalar /// @{ // Some declarations. These are traces of products. template<typename Real> bool ApproxEqual(const MatrixBase<Real> &A, const MatrixBase<Real> &B, Real tol = 0.01) { return A.ApproxEqual(B, tol); } template<typename Real> inline void AssertEqual(const MatrixBase<Real> &A, const MatrixBase<Real> &B, float tol = 0.01) { KALDI_ASSERT(A.ApproxEqual(B, tol)); } /// Returns trace of matrix. template <typename Real> double TraceMat(const MatrixBase<Real> &A) { return A.Trace(); } /// Returns tr(A B C) template <typename Real> Real TraceMatMatMat(const MatrixBase<Real> &A, MatrixTransposeType transA, const MatrixBase<Real> &B, MatrixTransposeType transB, const MatrixBase<Real> &C, MatrixTransposeType transC); /// Returns tr(A B C D) template <typename Real> Real TraceMatMatMatMat(const MatrixBase<Real> &A, MatrixTransposeType transA, const MatrixBase<Real> &B, MatrixTransposeType transB, const MatrixBase<Real> &C, MatrixTransposeType transC, const MatrixBase<Real> &D, MatrixTransposeType transD); /// @} end "addtogroup matrix_funcs_scalar" /// \addtogroup matrix_funcs_misc /// @{ /// Function to ensure that SVD is sorted. This function is made as generic as /// possible, to be applicable to other types of problems. s->Dim() should be /// the same as U->NumCols(), and we sort s from greatest to least absolute /// value (if sort_on_absolute_value == true) or greatest to least value /// otherwise, moving the columns of U, if it exists, and the rows of Vt, if it /// exists, around in the same way. Note: the "absolute value" part won't matter /// if this is an actual SVD, since singular values are non-negative. template<typename Real> void SortSvd(VectorBase<Real> *s, MatrixBase<Real> *U, MatrixBase<Real>* Vt = NULL, bool sort_on_absolute_value = true); /// Creates the eigenvalue matrix D that is part of the decomposition used Matrix::Eig. /// D will be block-diagonal with blocks of size 1 (for real eigenvalues) or 2x2 /// for complex pairs. If a complex pair is lambda +- i*mu, D will have a corresponding /// 2x2 block [lambda, mu; -mu, lambda]. /// This function will throw if any complex eigenvalues are not in complex conjugate /// pairs (or the members of such pairs are not consecutively numbered). template<typename Real> void CreateEigenvalueMatrix(const VectorBase<Real> &real, const VectorBase<Real> &imag, MatrixBase<Real> *D); /// The following function is used in Matrix::Power, and separately tested, so we /// declare it here mainly for the testing code to see. It takes a complex value to /// a power using a method that will work for noninteger powers (but will fail if the /// complex value is real and negative). template<typename Real> bool AttemptComplexPower(Real *x_re, Real *x_im, Real power); /// @} end of addtogroup matrix_funcs_misc /// \addtogroup matrix_funcs_io /// @{ template<typename Real> std::ostream & operator << (std::ostream & Out, const MatrixBase<Real> & M); template<typename Real> std::istream & operator >> (std::istream & In, MatrixBase<Real> & M); // The Matrix read allows resizing, so we override the MatrixBase one. template<typename Real> std::istream & operator >> (std::istream & In, Matrix<Real> & M); template<typename Real> bool SameDim(const MatrixBase<Real> &M, const MatrixBase<Real> &N) { return (M.NumRows() == N.NumRows() && M.NumCols() == N.NumCols()); } /// @} end of \addtogroup matrix_funcs_io } // namespace kaldi // we need to include the implementation and some // template specializations. #include "matrix/kaldi-matrix-inl.h" #endif // KALDI_MATRIX_KALDI_MATRIX_H_ |