Blame view
src/matrix/sp-matrix.cc
43.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 |
// matrix/sp-matrix.cc // Copyright 2009-2011 Lukas Burget; Ondrej Glembek; Microsoft Corporation // Saarland University; Petr Schwarz; Yanmin Qian; // Haihua Xu // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <limits> #include "matrix/sp-matrix.h" #include "matrix/kaldi-vector.h" #include "matrix/kaldi-matrix.h" #include "matrix/matrix-functions.h" #include "matrix/cblas-wrappers.h" namespace kaldi { // **************************************************************************** // Returns the log-determinant if +ve definite, else KALDI_ERR. // **************************************************************************** template<typename Real> Real SpMatrix<Real>::LogPosDefDet() const { TpMatrix<Real> chol(this->NumRows()); double det = 0.0; double diag; chol.Cholesky(*this); // Will throw exception if not +ve definite! for (MatrixIndexT i = 0; i < this->NumRows(); i++) { diag = static_cast<double>(chol(i, i)); det += kaldi::Log(diag); } return static_cast<Real>(2*det); } template<typename Real> void SpMatrix<Real>::Swap(SpMatrix<Real> *other) { std::swap(this->data_, other->data_); std::swap(this->num_rows_, other->num_rows_); } template<typename Real> void SpMatrix<Real>::SymPosSemiDefEig(VectorBase<Real> *s, MatrixBase<Real> *P, Real tolerance) const { Eig(s, P); Real max = s->Max(), min = s->Min(); KALDI_ASSERT(-min <= tolerance * max); s->ApplyFloor(0.0); } template<typename Real> Real SpMatrix<Real>::MaxAbsEig() const { Vector<Real> s(this->NumRows()); this->Eig(&s, static_cast<MatrixBase<Real>*>(NULL)); return std::max(s.Max(), -s.Min()); } // returns true if positive definite--uses cholesky. template<typename Real> bool SpMatrix<Real>::IsPosDef() const { MatrixIndexT D = (*this).NumRows(); KALDI_ASSERT(D > 0); try { TpMatrix<Real> C(D); C.Cholesky(*this); for (MatrixIndexT r = 0; r < D; r++) if (C(r, r) == 0.0) return false; return true; } catch(...) { // not positive semidefinite. return false; } } template<typename Real> void SpMatrix<Real>::ApplyPow(Real power) { if (power == 1) return; // can do nothing. MatrixIndexT D = this->NumRows(); KALDI_ASSERT(D > 0); Matrix<Real> U(D, D); Vector<Real> l(D); (*this).SymPosSemiDefEig(&l, &U); Vector<Real> l_copy(l); try { l.ApplyPow(power * 0.5); } catch(...) { KALDI_ERR << "Error taking power " << (power * 0.5) << " of vector " << l_copy; } U.MulColsVec(l); (*this).AddMat2(1.0, U, kNoTrans, 0.0); } template<typename Real> void SpMatrix<Real>::CopyFromMat(const MatrixBase<Real> &M, SpCopyType copy_type) { KALDI_ASSERT(this->NumRows() == M.NumRows() && M.NumRows() == M.NumCols()); MatrixIndexT D = this->NumRows(); switch (copy_type) { case kTakeMeanAndCheck: { Real good_sum = 0.0, bad_sum = 0.0; for (MatrixIndexT i = 0; i < D; i++) { for (MatrixIndexT j = 0; j < i; j++) { Real a = M(i, j), b = M(j, i), avg = 0.5*(a+b), diff = 0.5*(a-b); (*this)(i, j) = avg; good_sum += std::abs(avg); bad_sum += std::abs(diff); } good_sum += std::abs(M(i, i)); (*this)(i, i) = M(i, i); } if (bad_sum > 0.01 * good_sum) { KALDI_ERR << "SpMatrix::Copy(), source matrix is not symmetric: " << bad_sum << ">" << good_sum; } break; } case kTakeMean: { for (MatrixIndexT i = 0; i < D; i++) { for (MatrixIndexT j = 0; j < i; j++) { (*this)(i, j) = 0.5*(M(i, j) + M(j, i)); } (*this)(i, i) = M(i, i); } break; } case kTakeLower: { // making this one a bit more efficient. const Real *src = M.Data(); Real *dest = this->data_; MatrixIndexT stride = M.Stride(); for (MatrixIndexT i = 0; i < D; i++) { for (MatrixIndexT j = 0; j <= i; j++) dest[j] = src[j]; dest += i + 1; src += stride; } } break; case kTakeUpper: for (MatrixIndexT i = 0; i < D; i++) for (MatrixIndexT j = 0; j <= i; j++) (*this)(i, j) = M(j, i); break; default: KALDI_ASSERT("Invalid argument to SpMatrix::CopyFromMat"); } } template<typename Real> Real SpMatrix<Real>::Trace() const { const Real *data = this->data_; MatrixIndexT num_rows = this->num_rows_; Real ans = 0.0; for (int32 i = 1; i <= num_rows; i++, data += i) ans += *data; return ans; } // diagonal update, this <-- this + diag(v) template<typename Real> template<typename OtherReal> void SpMatrix<Real>::AddDiagVec(const Real alpha, const VectorBase<OtherReal> &v) { int32 num_rows = this->num_rows_; KALDI_ASSERT(num_rows == v.Dim() && num_rows > 0); const OtherReal *src = v.Data(); Real *dst = this->data_; if (alpha == 1.0) for (int32 i = 1; i <= num_rows; i++, src++, dst += i) *dst += *src; else for (int32 i = 1; i <= num_rows; i++, src++, dst += i) *dst += alpha * *src; } // instantiate the template above. template void SpMatrix<float>::AddDiagVec(const float alpha, const VectorBase<double> &v); template void SpMatrix<double>::AddDiagVec(const double alpha, const VectorBase<float> &v); template void SpMatrix<float>::AddDiagVec(const float alpha, const VectorBase<float> &v); template void SpMatrix<double>::AddDiagVec(const double alpha, const VectorBase<double> &v); template<> template<> void SpMatrix<double>::AddVec2(const double alpha, const VectorBase<double> &v); #ifndef HAVE_ATLAS template<typename Real> void SpMatrix<Real>::Invert(Real *logdet, Real *det_sign, bool need_inverse) { // these are CLAPACK types KaldiBlasInt result; KaldiBlasInt rows = static_cast<int>(this->num_rows_); KaldiBlasInt* p_ipiv = new KaldiBlasInt[rows]; Real *p_work; // workspace for the lapack function void *temp; if ((p_work = static_cast<Real*>( KALDI_MEMALIGN(16, sizeof(Real) * rows, &temp))) == NULL) { delete[] p_ipiv; throw std::bad_alloc(); } #ifdef HAVE_OPENBLAS memset(p_work, 0, sizeof(Real) * rows); // gets rid of a probably // spurious Valgrind warning about jumps depending upon uninitialized values. #endif // NOTE: Even though "U" is for upper, lapack assumes column-wise storage // of the data. We have a row-wise storage, therefore, we need to "invert" clapack_Xsptrf(&rows, this->data_, p_ipiv, &result); KALDI_ASSERT(result >= 0 && "Call to CLAPACK ssptrf_ called with wrong arguments"); if (result > 0) { // Singular... if (det_sign) *det_sign = 0; if (logdet) *logdet = -std::numeric_limits<Real>::infinity(); if (need_inverse) KALDI_ERR << "CLAPACK stptrf_ : factorization failed"; } else { // Not singular.. compute log-determinant if needed. if (logdet != NULL || det_sign != NULL) { Real prod = 1.0, log_prod = 0.0; int sign = 1; for (int i = 0; i < (int)this->num_rows_; i++) { if (p_ipiv[i] > 0) { // not a 2x2 block... // if (p_ipiv[i] != i+1) sign *= -1; // row swap. Real diag = (*this)(i, i); prod *= diag; } else { // negative: 2x2 block. [we are in first of the two]. i++; // skip over the first of the pair. // each 2x2 block... Real diag1 = (*this)(i, i), diag2 = (*this)(i-1, i-1), offdiag = (*this)(i, i-1); Real thisdet = diag1*diag2 - offdiag*offdiag; // thisdet == determinant of 2x2 block. // The following line is more complex than it looks: there are 2 offsets of // 1 that cancel. prod *= thisdet; } if (i == (int)(this->num_rows_-1) || fabs(prod) < 1.0e-10 || fabs(prod) > 1.0e+10) { if (prod < 0) { prod = -prod; sign *= -1; } log_prod += kaldi::Log(std::abs(prod)); prod = 1.0; } } if (logdet != NULL) *logdet = log_prod; if (det_sign != NULL) *det_sign = sign; } } if (!need_inverse) { delete [] p_ipiv; KALDI_MEMALIGN_FREE(p_work); return; // Don't need what is computed next. } // NOTE: Even though "U" is for upper, lapack assumes column-wise storage // of the data. We have a row-wise storage, therefore, we need to "invert" clapack_Xsptri(&rows, this->data_, p_ipiv, p_work, &result); KALDI_ASSERT(result >=0 && "Call to CLAPACK ssptri_ called with wrong arguments"); if (result != 0) { KALDI_ERR << "CLAPACK ssptrf_ : Matrix is singular"; } delete [] p_ipiv; KALDI_MEMALIGN_FREE(p_work); } #else // in the ATLAS case, these are not implemented using a library and we back off to something else. template<typename Real> void SpMatrix<Real>::Invert(Real *logdet, Real *det_sign, bool need_inverse) { Matrix<Real> M(this->NumRows(), this->NumCols()); M.CopyFromSp(*this); M.Invert(logdet, det_sign, need_inverse); if (need_inverse) for (MatrixIndexT i = 0; i < this->NumRows(); i++) for (MatrixIndexT j = 0; j <= i; j++) (*this)(i, j) = M(i, j); } #endif template<typename Real> void SpMatrix<Real>::InvertDouble(Real *logdet, Real *det_sign, bool inverse_needed) { SpMatrix<double> dmat(*this); double logdet_tmp, det_sign_tmp; dmat.Invert(logdet ? &logdet_tmp : NULL, det_sign ? &det_sign_tmp : NULL, inverse_needed); if (logdet) *logdet = logdet_tmp; if (det_sign) *det_sign = det_sign_tmp; (*this).CopyFromSp(dmat); } double TraceSpSp(const SpMatrix<double> &A, const SpMatrix<double> &B) { KALDI_ASSERT(A.NumRows() == B.NumRows()); const double *Aptr = A.Data(); const double *Bptr = B.Data(); MatrixIndexT R = A.NumRows(); MatrixIndexT RR = (R * (R + 1)) / 2; double all_twice = 2.0 * cblas_Xdot(RR, Aptr, 1, Bptr, 1); // "all_twice" contains twice the vector-wise dot-product... this is // what we want except the diagonal elements are represented // twice. double diag_once = 0.0; for (MatrixIndexT row_plus_two = 2; row_plus_two <= R + 1; row_plus_two++) { diag_once += *Aptr * *Bptr; Aptr += row_plus_two; Bptr += row_plus_two; } return all_twice - diag_once; } float TraceSpSp(const SpMatrix<float> &A, const SpMatrix<float> &B) { KALDI_ASSERT(A.NumRows() == B.NumRows()); const float *Aptr = A.Data(); const float *Bptr = B.Data(); MatrixIndexT R = A.NumRows(); MatrixIndexT RR = (R * (R + 1)) / 2; float all_twice = 2.0 * cblas_Xdot(RR, Aptr, 1, Bptr, 1); // "all_twice" contains twice the vector-wise dot-product... this is // what we want except the diagonal elements are represented // twice. float diag_once = 0.0; for (MatrixIndexT row_plus_two = 2; row_plus_two <= R + 1; row_plus_two++) { diag_once += *Aptr * *Bptr; Aptr += row_plus_two; Bptr += row_plus_two; } return all_twice - diag_once; } template<typename Real, typename OtherReal> Real TraceSpSp(const SpMatrix<Real> &A, const SpMatrix<OtherReal> &B) { KALDI_ASSERT(A.NumRows() == B.NumRows()); Real ans = 0.0; const Real *Aptr = A.Data(); const OtherReal *Bptr = B.Data(); MatrixIndexT row, col, R = A.NumRows(); for (row = 0; row < R; row++) { for (col = 0; col < row; col++) ans += 2.0 * *(Aptr++) * *(Bptr++); ans += *(Aptr++) * *(Bptr++); // Diagonal. } return ans; } template float TraceSpSp<float, double>(const SpMatrix<float> &A, const SpMatrix<double> &B); template double TraceSpSp<double, float>(const SpMatrix<double> &A, const SpMatrix<float> &B); template<typename Real> Real TraceSpMat(const SpMatrix<Real> &A, const MatrixBase<Real> &B) { KALDI_ASSERT(A.NumRows() == B.NumRows() && A.NumCols() == B.NumCols() && "KALDI_ERR: TraceSpMat: arguments have mismatched dimension"); MatrixIndexT R = A.NumRows(); Real ans = (Real)0.0; const Real *Aptr = A.Data(), *Bptr = B.Data(); MatrixIndexT bStride = B.Stride(); for (MatrixIndexT r = 0;r < R;r++) { for (MatrixIndexT c = 0;c < r;c++) { // ans += A(r, c) * (B(r, c) + B(c, r)); ans += *(Aptr++) * (Bptr[r*bStride + c] + Bptr[c*bStride + r]); } // ans += A(r, r) * B(r, r); ans += *(Aptr++) * Bptr[r*bStride + r]; } return ans; } template float TraceSpMat(const SpMatrix<float> &A, const MatrixBase<float> &B); template double TraceSpMat(const SpMatrix<double> &A, const MatrixBase<double> &B); template<typename Real> Real TraceMatSpMat(const MatrixBase<Real> &A, MatrixTransposeType transA, const SpMatrix<Real> &B, const MatrixBase<Real> &C, MatrixTransposeType transC) { KALDI_ASSERT((transA == kTrans?A.NumCols():A.NumRows()) == (transC == kTrans?C.NumRows():C.NumCols()) && (transA == kTrans?A.NumRows():A.NumCols()) == B.NumRows() && (transC == kTrans?C.NumCols():C.NumRows()) == B.NumRows() && "TraceMatSpMat: arguments have wrong dimension."); Matrix<Real> tmp(B.NumRows(), B.NumRows()); tmp.AddMatMat(1.0, C, transC, A, transA, 0.0); // tmp = C * A. return TraceSpMat(B, tmp); } template float TraceMatSpMat(const MatrixBase<float> &A, MatrixTransposeType transA, const SpMatrix<float> &B, const MatrixBase<float> &C, MatrixTransposeType transC); template double TraceMatSpMat(const MatrixBase<double> &A, MatrixTransposeType transA, const SpMatrix<double> &B, const MatrixBase<double> &C, MatrixTransposeType transC); template<typename Real> Real TraceMatSpMatSp(const MatrixBase<Real> &A, MatrixTransposeType transA, const SpMatrix<Real> &B, const MatrixBase<Real> &C, MatrixTransposeType transC, const SpMatrix<Real> &D) { KALDI_ASSERT((transA == kTrans ?A.NumCols():A.NumRows() == D.NumCols()) && (transA == kTrans ? A.NumRows():A.NumCols() == B.NumRows()) && (transC == kTrans ? A.NumCols():A.NumRows() == B.NumCols()) && (transC == kTrans ? A.NumRows():A.NumCols() == D.NumRows()) && "KALDI_ERR: TraceMatSpMatSp: arguments have mismatched dimension."); // Could perhaps optimize this more depending on dimensions of quantities. Matrix<Real> tmpAB(transA == kTrans ? A.NumCols():A.NumRows(), B.NumCols()); tmpAB.AddMatSp(1.0, A, transA, B, 0.0); Matrix<Real> tmpCD(transC == kTrans ? C.NumCols():C.NumRows(), D.NumCols()); tmpCD.AddMatSp(1.0, C, transC, D, 0.0); return TraceMatMat(tmpAB, tmpCD, kNoTrans); } template float TraceMatSpMatSp(const MatrixBase<float> &A, MatrixTransposeType transA, const SpMatrix<float> &B, const MatrixBase<float> &C, MatrixTransposeType transC, const SpMatrix<float> &D); template double TraceMatSpMatSp(const MatrixBase<double> &A, MatrixTransposeType transA, const SpMatrix<double> &B, const MatrixBase<double> &C, MatrixTransposeType transC, const SpMatrix<double> &D); template<typename Real> bool SpMatrix<Real>::IsDiagonal(Real cutoff) const { MatrixIndexT R = this->NumRows(); Real bad_sum = 0.0, good_sum = 0.0; for (MatrixIndexT i = 0; i < R; i++) { for (MatrixIndexT j = 0; j <= i; j++) { if (i == j) good_sum += std::abs((*this)(i, j)); else bad_sum += std::abs((*this)(i, j)); } } return (!(bad_sum > good_sum * cutoff)); } template<typename Real> bool SpMatrix<Real>::IsUnit(Real cutoff) const { MatrixIndexT R = this->NumRows(); Real max = 0.0; // max error for (MatrixIndexT i = 0; i < R; i++) for (MatrixIndexT j = 0; j <= i; j++) max = std::max(max, static_cast<Real>(std::abs((*this)(i, j) - (i == j ? 1.0 : 0.0)))); return (max <= cutoff); } template<typename Real> bool SpMatrix<Real>::IsTridiagonal(Real cutoff) const { MatrixIndexT R = this->NumRows(); Real max_abs_2diag = 0.0, max_abs_offdiag = 0.0; for (MatrixIndexT i = 0; i < R; i++) for (MatrixIndexT j = 0; j <= i; j++) { if (j+1 < i) max_abs_offdiag = std::max(max_abs_offdiag, std::abs((*this)(i, j))); else max_abs_2diag = std::max(max_abs_2diag, std::abs((*this)(i, j))); } return (max_abs_offdiag <= cutoff * max_abs_2diag); } template<typename Real> bool SpMatrix<Real>::IsZero(Real cutoff) const { if (this->num_rows_ == 0) return true; return (this->Max() <= cutoff && this->Min() >= -cutoff); } template<typename Real> Real SpMatrix<Real>::FrobeniusNorm() const { Real sum = 0.0; MatrixIndexT R = this->NumRows(); for (MatrixIndexT i = 0; i < R; i++) { for (MatrixIndexT j = 0; j < i; j++) sum += (*this)(i, j) * (*this)(i, j) * 2; sum += (*this)(i, i) * (*this)(i, i); } return std::sqrt(sum); } template<typename Real> bool SpMatrix<Real>::ApproxEqual(const SpMatrix<Real> &other, float tol) const { if (this->NumRows() != other.NumRows()) KALDI_ERR << "SpMatrix::AproxEqual, size mismatch, " << this->NumRows() << " vs. " << other.NumRows(); SpMatrix<Real> tmp(*this); tmp.AddSp(-1.0, other); return (tmp.FrobeniusNorm() <= tol * std::max(this->FrobeniusNorm(), other.FrobeniusNorm())); } // function Floor: A = Floor(B, alpha * C) ... see tutorial document. template<typename Real> int SpMatrix<Real>::ApplyFloor(const SpMatrix<Real> &C, Real alpha, bool verbose) { MatrixIndexT dim = this->NumRows(); int nfloored = 0; KALDI_ASSERT(C.NumRows() == dim); KALDI_ASSERT(alpha > 0); TpMatrix<Real> L(dim); L.Cholesky(C); L.Scale(std::sqrt(alpha)); // equivalent to scaling C by alpha. TpMatrix<Real> LInv(L); LInv.Invert(); SpMatrix<Real> D(dim); { // D = L^{-1} * (*this) * L^{-T} Matrix<Real> LInvFull(LInv); D.AddMat2Sp(1.0, LInvFull, kNoTrans, (*this), 0.0); } Vector<Real> l(dim); Matrix<Real> U(dim, dim); D.Eig(&l, &U); if (verbose) { KALDI_LOG << "ApplyFloor: flooring following diagonal to 1: " << l; } for (MatrixIndexT i = 0; i < l.Dim(); i++) { if (l(i) < 1.0) { nfloored++; l(i) = 1.0; } } l.ApplyPow(0.5); U.MulColsVec(l); D.AddMat2(1.0, U, kNoTrans, 0.0); { // D' := U * diag(l') * U^T ... l'=floor(l, 1) Matrix<Real> LFull(L); (*this).AddMat2Sp(1.0, LFull, kNoTrans, D, 0.0); // A := L * D' * L^T } return nfloored; } template<typename Real> Real SpMatrix<Real>::LogDet(Real *det_sign) const { Real log_det; SpMatrix<Real> tmp(*this); // false== output not needed (saves some computation). tmp.Invert(&log_det, det_sign, false); return log_det; } template<typename Real> int SpMatrix<Real>::ApplyFloor(Real floor) { MatrixIndexT Dim = this->NumRows(); int nfloored = 0; Vector<Real> s(Dim); Matrix<Real> P(Dim, Dim); (*this).Eig(&s, &P); for (MatrixIndexT i = 0; i < Dim; i++) { if (s(i) < floor) { nfloored++; s(i) = floor; } } (*this).AddMat2Vec(1.0, P, kNoTrans, s, 0.0); return nfloored; } template<typename Real> MatrixIndexT SpMatrix<Real>::LimitCond(Real maxCond, bool invert) { // e.g. maxCond = 1.0e+05. MatrixIndexT Dim = this->NumRows(); Vector<Real> s(Dim); Matrix<Real> P(Dim, Dim); (*this).SymPosSemiDefEig(&s, &P); KALDI_ASSERT(maxCond > 1); Real floor = s.Max() / maxCond; if (floor < 0) floor = 0; if (floor < 1.0e-40) { KALDI_WARN << "LimitCond: limiting " << floor << " to 1.0e-40"; floor = 1.0e-40; } MatrixIndexT nfloored = 0; for (MatrixIndexT i = 0; i < Dim; i++) { if (s(i) <= floor) nfloored++; if (invert) s(i) = 1.0 / std::sqrt(std::max(s(i), floor)); else s(i) = std::sqrt(std::max(s(i), floor)); } P.MulColsVec(s); (*this).AddMat2(1.0, P, kNoTrans, 0.0); // (*this) = P*P^T. ... (*this) = P * floor(s) * P^T ... if P was original P. return nfloored; } void SolverOptions::Check() const { KALDI_ASSERT(K>10 && eps<1.0e-10); } template<> double SolveQuadraticProblem(const SpMatrix<double> &H, const VectorBase<double> &g, const SolverOptions &opts, VectorBase<double> *x) { KALDI_ASSERT(H.NumRows() == g.Dim() && g.Dim() == x->Dim() && x->Dim() != 0); opts.Check(); MatrixIndexT dim = x->Dim(); if (H.IsZero(0.0)) { KALDI_WARN << "Zero quadratic term in quadratic vector problem for " << opts.name << ": leaving it unchanged."; return 0.0; } if (opts.diagonal_precondition) { // We can re-cast the problem with a diagonal preconditioner to // make H better-conditioned. Vector<double> H_diag(dim); H_diag.CopyDiagFromSp(H); H_diag.ApplyFloor(std::numeric_limits<double>::min() * 1.0E+3); Vector<double> H_diag_sqrt(H_diag); H_diag_sqrt.ApplyPow(0.5); Vector<double> H_diag_inv_sqrt(H_diag_sqrt); H_diag_inv_sqrt.InvertElements(); Vector<double> x_scaled(*x); x_scaled.MulElements(H_diag_sqrt); Vector<double> g_scaled(g); g_scaled.MulElements(H_diag_inv_sqrt); SpMatrix<double> H_scaled(dim); H_scaled.AddVec2Sp(1.0, H_diag_inv_sqrt, H, 0.0); double ans; SolverOptions new_opts(opts); new_opts.diagonal_precondition = false; ans = SolveQuadraticProblem(H_scaled, g_scaled, new_opts, &x_scaled); x->CopyFromVec(x_scaled); x->MulElements(H_diag_inv_sqrt); return ans; } Vector<double> gbar(g); if (opts.optimize_delta) gbar.AddSpVec(-1.0, H, *x, 1.0); // gbar = g - H x Matrix<double> U(dim, dim); Vector<double> l(dim); H.SymPosSemiDefEig(&l, &U); // does svd H = U L V^T and checks that H == U L U^T to within a tolerance. // floor l. double f = std::max(static_cast<double>(opts.eps), l.Max() / opts.K); MatrixIndexT nfloored = 0; for (MatrixIndexT i = 0; i < dim; i++) { // floor l. if (l(i) < f) { nfloored++; l(i) = f; } } if (nfloored != 0 && opts.print_debug_output) { KALDI_LOG << "Solving quadratic problem for " << opts.name << ": floored " << nfloored<< " eigenvalues. "; } Vector<double> tmp(dim); tmp.AddMatVec(1.0, U, kTrans, gbar, 0.0); // tmp = U^T \bar{g} tmp.DivElements(l); // divide each element of tmp by l: tmp = \tilde{L}^{-1} U^T \bar{g} Vector<double> delta(dim); delta.AddMatVec(1.0, U, kNoTrans, tmp, 0.0); // delta = U tmp = U \tilde{L}^{-1} U^T \bar{g} Vector<double> &xhat(tmp); xhat.CopyFromVec(delta); if (opts.optimize_delta) xhat.AddVec(1.0, *x); // xhat = x + delta. double auxf_before = VecVec(g, *x) - 0.5 * VecSpVec(*x, H, *x), auxf_after = VecVec(g, xhat) - 0.5 * VecSpVec(xhat, H, xhat); if (auxf_after < auxf_before) { // Reject change. if (auxf_after < auxf_before - 1.0e-10 && opts.print_debug_output) KALDI_WARN << "Optimizing vector auxiliary function for " << opts.name<< ": auxf decreased " << auxf_before << " to " << auxf_after << ", change is " << (auxf_after-auxf_before); return 0.0; } else { x->CopyFromVec(xhat); return auxf_after - auxf_before; } } template<> float SolveQuadraticProblem(const SpMatrix<float> &H, const VectorBase<float> &g, const SolverOptions &opts, VectorBase<float> *x) { KALDI_ASSERT(H.NumRows() == g.Dim() && g.Dim() == x->Dim() && x->Dim() != 0); SpMatrix<double> Hd(H); Vector<double> gd(g); Vector<double> xd(*x); float ans = static_cast<float>(SolveQuadraticProblem(Hd, gd, opts, &xd)); x->CopyFromVec(xd); return ans; } // Maximizes the auxiliary function Q(x) = tr(M^T SigmaInv Y) - 0.5 tr(SigmaInv M Q M^T). // Like a numerically stable version of M := Y Q^{-1}. template<typename Real> Real SolveQuadraticMatrixProblem(const SpMatrix<Real> &Q, const MatrixBase<Real> &Y, const SpMatrix<Real> &SigmaInv, const SolverOptions &opts, MatrixBase<Real> *M) { KALDI_ASSERT(Q.NumRows() == M->NumCols() && SigmaInv.NumRows() == M->NumRows() && Y.NumRows() == M->NumRows() && Y.NumCols() == M->NumCols() && M->NumCols() != 0); opts.Check(); MatrixIndexT rows = M->NumRows(), cols = M->NumCols(); if (Q.IsZero(0.0)) { KALDI_WARN << "Zero quadratic term in quadratic matrix problem for " << opts.name << ": leaving it unchanged."; return 0.0; } if (opts.diagonal_precondition) { // We can re-cast the problem with a diagonal preconditioner in the space // of Q (columns of M). Helps to improve the condition of Q. Vector<Real> Q_diag(cols); Q_diag.CopyDiagFromSp(Q); Q_diag.ApplyFloor(std::numeric_limits<Real>::min() * 1.0E+3); Vector<Real> Q_diag_sqrt(Q_diag); Q_diag_sqrt.ApplyPow(0.5); Vector<Real> Q_diag_inv_sqrt(Q_diag_sqrt); Q_diag_inv_sqrt.InvertElements(); Matrix<Real> M_scaled(*M); M_scaled.MulColsVec(Q_diag_sqrt); Matrix<Real> Y_scaled(Y); Y_scaled.MulColsVec(Q_diag_inv_sqrt); SpMatrix<Real> Q_scaled(cols); Q_scaled.AddVec2Sp(1.0, Q_diag_inv_sqrt, Q, 0.0); Real ans; SolverOptions new_opts(opts); new_opts.diagonal_precondition = false; ans = SolveQuadraticMatrixProblem(Q_scaled, Y_scaled, SigmaInv, new_opts, &M_scaled); M->CopyFromMat(M_scaled); M->MulColsVec(Q_diag_inv_sqrt); return ans; } Matrix<Real> Ybar(Y); if (opts.optimize_delta) { Matrix<Real> Qfull(Q); Ybar.AddMatMat(-1.0, *M, kNoTrans, Qfull, kNoTrans, 1.0); } // Ybar = Y - M Q. Matrix<Real> U(cols, cols); Vector<Real> l(cols); Q.SymPosSemiDefEig(&l, &U); // does svd Q = U L V^T and checks that Q == U L U^T to within a tolerance. // floor l. Real f = std::max<Real>(static_cast<Real>(opts.eps), l.Max() / opts.K); MatrixIndexT nfloored = 0; for (MatrixIndexT i = 0; i < cols; i++) { // floor l. if (l(i) < f) { nfloored++; l(i) = f; } } if (nfloored != 0 && opts.print_debug_output) KALDI_LOG << "Solving matrix problem for " << opts.name << ": floored " << nfloored << " eigenvalues. "; Matrix<Real> tmpDelta(rows, cols); tmpDelta.AddMatMat(1.0, Ybar, kNoTrans, U, kNoTrans, 0.0); // tmpDelta = Ybar * U. l.InvertElements(); KALDI_ASSERT(1.0/l.Max() != 0); // check not infinite. eps should take care of this. tmpDelta.MulColsVec(l); // tmpDelta = Ybar * U * \tilde{L}^{-1} Matrix<Real> Delta(rows, cols); Delta.AddMatMat(1.0, tmpDelta, kNoTrans, U, kTrans, 0.0); // Delta = Ybar * U * \tilde{L}^{-1} * U^T Real auxf_before, auxf_after; SpMatrix<Real> MQM(rows); Matrix<Real> &SigmaInvY(tmpDelta); { Matrix<Real> SigmaInvFull(SigmaInv); SigmaInvY.AddMatMat(1.0, SigmaInvFull, kNoTrans, Y, kNoTrans, 0.0); } { // get auxf_before. Q(x) = tr(M^T SigmaInv Y) - 0.5 tr(SigmaInv M Q M^T). MQM.AddMat2Sp(1.0, *M, kNoTrans, Q, 0.0); auxf_before = TraceMatMat(*M, SigmaInvY, kaldi::kTrans) - 0.5*TraceSpSp(SigmaInv, MQM); } Matrix<Real> Mhat(Delta); if (opts.optimize_delta) Mhat.AddMat(1.0, *M); // Mhat = Delta + M. { // get auxf_after. MQM.AddMat2Sp(1.0, Mhat, kNoTrans, Q, 0.0); auxf_after = TraceMatMat(Mhat, SigmaInvY, kaldi::kTrans) - 0.5*TraceSpSp(SigmaInv, MQM); } if (auxf_after < auxf_before) { if (auxf_after < auxf_before - 1.0e-10) KALDI_WARN << "Optimizing matrix auxiliary function for " << opts.name << ", auxf decreased " << auxf_before << " to " << auxf_after << ", change is " << (auxf_after-auxf_before); return 0.0; } else { M->CopyFromMat(Mhat); return auxf_after - auxf_before; } } template<typename Real> Real SolveDoubleQuadraticMatrixProblem(const MatrixBase<Real> &G, const SpMatrix<Real> &P1, const SpMatrix<Real> &P2, const SpMatrix<Real> &Q1, const SpMatrix<Real> &Q2, const SolverOptions &opts, MatrixBase<Real> *M) { KALDI_ASSERT(Q1.NumRows() == M->NumCols() && P1.NumRows() == M->NumRows() && G.NumRows() == M->NumRows() && G.NumCols() == M->NumCols() && M->NumCols() != 0 && Q2.NumRows() == M->NumCols() && P2.NumRows() == M->NumRows()); MatrixIndexT rows = M->NumRows(), cols = M->NumCols(); // The following check should not fail as we stipulate P1, P2 and one of Q1 // or Q2 must be +ve def and other Q1 or Q2 must be +ve semidef. TpMatrix<Real> LInv(rows); LInv.Cholesky(P1); LInv.Invert(); // Will throw exception if fails. SpMatrix<Real> S(rows); Matrix<Real> LInvFull(LInv); S.AddMat2Sp(1.0, LInvFull, kNoTrans, P2, 0.0); // S := L^{-1} P_2 L^{-T} Matrix<Real> U(rows, rows); Vector<Real> d(rows); S.SymPosSemiDefEig(&d, &U); Matrix<Real> T(rows, rows); T.AddMatMat(1.0, U, kTrans, LInvFull, kNoTrans, 0.0); // T := U^T * L^{-1} #ifdef KALDI_PARANOID // checking mainly for errors in the code or math. { SpMatrix<Real> P1Trans(rows); P1Trans.AddMat2Sp(1.0, T, kNoTrans, P1, 0.0); KALDI_ASSERT(P1Trans.IsUnit(0.01)); } { SpMatrix<Real> P2Trans(rows); P2Trans.AddMat2Sp(1.0, T, kNoTrans, P2, 0.0); KALDI_ASSERT(P2Trans.IsDiagonal(0.01)); } #endif Matrix<Real> TInv(T); TInv.Invert(); Matrix<Real> Gdash(rows, cols); Gdash.AddMatMat(1.0, T, kNoTrans, G, kNoTrans, 0.0); // G' = T G Matrix<Real> MdashOld(rows, cols); MdashOld.AddMatMat(1.0, TInv, kTrans, *M, kNoTrans, 0.0); // M' = T^{-T} M Matrix<Real> MdashNew(MdashOld); Real objf_impr = 0.0; for (MatrixIndexT n = 0; n < rows; n++) { SpMatrix<Real> Qsum(Q1); Qsum.AddSp(d(n), Q2); SubVector<Real> mdash_n = MdashNew.Row(n); SubVector<Real> gdash_n = Gdash.Row(n); Matrix<Real> QsumInv(Qsum); try { QsumInv.Invert(); Real old_objf = VecVec(mdash_n, gdash_n) - 0.5 * VecSpVec(mdash_n, Qsum, mdash_n); mdash_n.AddMatVec(1.0, QsumInv, kNoTrans, gdash_n, 0.0); // m'_n := g'_n * (Q_1 + d_n Q_2)^{-1} Real new_objf = VecVec(mdash_n, gdash_n) - 0.5 * VecSpVec(mdash_n, Qsum, mdash_n); if (new_objf < old_objf) { if (new_objf < old_objf - 1.0e-05) { KALDI_WARN << "In double quadratic matrix problem: objective " "function decreasing during optimization of " << opts.name << ", " << old_objf << "->" << new_objf << ", change is " << (new_objf - old_objf); KALDI_ERR << "Auxiliary function decreasing."; // Will be caught. } else { // Reset to old value, didn't improve (very close to optimum). MdashNew.Row(n).CopyFromVec(MdashOld.Row(n)); } } objf_impr += new_objf - old_objf; } catch (...) { KALDI_WARN << "Matrix inversion or optimization failed during double " "quadratic problem, solving for" << opts.name << ": trying more stable approach."; objf_impr += SolveQuadraticProblem(Qsum, gdash_n, opts, &mdash_n); } } M->AddMatMat(1.0, T, kTrans, MdashNew, kNoTrans, 0.0); // M := T^T M'. return objf_impr; } // rank-one update, this <-- this + alpha V V' template<> template<> void SpMatrix<float>::AddVec2(const float alpha, const VectorBase<float> &v) { KALDI_ASSERT(v.Dim() == this->NumRows()); cblas_Xspr(v.Dim(), alpha, v.Data(), 1, this->data_); } template<class Real> void SpMatrix<Real>::AddVec2Sp(const Real alpha, const VectorBase<Real> &v, const SpMatrix<Real> &S, const Real beta) { KALDI_ASSERT(v.Dim() == this->NumRows() && S.NumRows() == this->NumRows()); const Real *Sdata = S.Data(); const Real *vdata = v.Data(); Real *data = this->data_; MatrixIndexT dim = this->num_rows_; for (MatrixIndexT r = 0; r < dim; r++) for (MatrixIndexT c = 0; c <= r; c++, Sdata++, data++) *data = beta * *data + alpha * vdata[r] * vdata[c] * *Sdata; } // rank-one update, this <-- this + alpha V V' template<> template<> void SpMatrix<double>::AddVec2(const double alpha, const VectorBase<double> &v) { KALDI_ASSERT(v.Dim() == num_rows_); cblas_Xspr(v.Dim(), alpha, v.Data(), 1, data_); } template<typename Real> template<typename OtherReal> void SpMatrix<Real>::AddVec2(const Real alpha, const VectorBase<OtherReal> &v) { KALDI_ASSERT(v.Dim() == this->NumRows()); Real *data = this->data_; const OtherReal *v_data = v.Data(); MatrixIndexT nr = this->num_rows_; for (MatrixIndexT i = 0; i < nr; i++) for (MatrixIndexT j = 0; j <= i; j++, data++) *data += alpha * v_data[i] * v_data[j]; } // instantiate the template above. template void SpMatrix<float>::AddVec2(const float alpha, const VectorBase<double> &v); template void SpMatrix<double>::AddVec2(const double alpha, const VectorBase<float> &v); template<typename Real> Real VecSpVec(const VectorBase<Real> &v1, const SpMatrix<Real> &M, const VectorBase<Real> &v2) { MatrixIndexT D = M.NumRows(); KALDI_ASSERT(v1.Dim() == D && v1.Dim() == v2.Dim()); Vector<Real> tmp_vec(D); cblas_Xspmv(D, 1.0, M.Data(), v1.Data(), 1, 0.0, tmp_vec.Data(), 1); return VecVec(tmp_vec, v2); } template float VecSpVec(const VectorBase<float> &v1, const SpMatrix<float> &M, const VectorBase<float> &v2); template double VecSpVec(const VectorBase<double> &v1, const SpMatrix<double> &M, const VectorBase<double> &v2); template<typename Real> void SpMatrix<Real>::AddMat2Sp( const Real alpha, const MatrixBase<Real> &M, MatrixTransposeType transM, const SpMatrix<Real> &A, const Real beta) { if (transM == kNoTrans) { KALDI_ASSERT(M.NumCols() == A.NumRows() && M.NumRows() == this->num_rows_); } else { KALDI_ASSERT(M.NumRows() == A.NumRows() && M.NumCols() == this->num_rows_); } Vector<Real> tmp_vec(A.NumRows()); Real *tmp_vec_data = tmp_vec.Data(); SpMatrix<Real> tmp_A; const Real *p_A_data = A.Data(); Real *p_row_data = this->Data(); MatrixIndexT M_other_dim = (transM == kNoTrans ? M.NumCols() : M.NumRows()), M_same_dim = (transM == kNoTrans ? M.NumRows() : M.NumCols()), M_stride = M.Stride(), dim = this->NumRows(); KALDI_ASSERT(M_same_dim == dim); const Real *M_data = M.Data(); if (this->Data() <= A.Data() + A.SizeInBytes() && this->Data() + this->SizeInBytes() >= A.Data()) { // Matrices A and *this overlap. Make copy of A tmp_A.Resize(A.NumRows()); tmp_A.CopyFromSp(A); p_A_data = tmp_A.Data(); } if (transM == kNoTrans) { for (MatrixIndexT r = 0; r < dim; r++, p_row_data += r) { cblas_Xspmv(A.NumRows(), 1.0, p_A_data, M.RowData(r), 1, 0.0, tmp_vec_data, 1); cblas_Xgemv(transM, r+1, M_other_dim, alpha, M_data, M_stride, tmp_vec_data, 1, beta, p_row_data, 1); } } else { for (MatrixIndexT r = 0; r < dim; r++, p_row_data += r) { cblas_Xspmv(A.NumRows(), 1.0, p_A_data, M.Data() + r, M.Stride(), 0.0, tmp_vec_data, 1); cblas_Xgemv(transM, M_other_dim, r+1, alpha, M_data, M_stride, tmp_vec_data, 1, beta, p_row_data, 1); } } } template<typename Real> void SpMatrix<Real>::AddSmat2Sp( const Real alpha, const MatrixBase<Real> &M, MatrixTransposeType transM, const SpMatrix<Real> &A, const Real beta) { KALDI_ASSERT((transM == kNoTrans && M.NumCols() == A.NumRows()) || (transM == kTrans && M.NumRows() == A.NumRows())); if (transM == kNoTrans) { KALDI_ASSERT(M.NumCols() == A.NumRows() && M.NumRows() == this->num_rows_); } else { KALDI_ASSERT(M.NumRows() == A.NumRows() && M.NumCols() == this->num_rows_); } MatrixIndexT Adim = A.NumRows(), dim = this->num_rows_; Matrix<Real> temp_A(A); // represent A as full matrix. Matrix<Real> temp_MA(dim, Adim); temp_MA.AddSmatMat(1.0, M, transM, temp_A, kNoTrans, 0.0); // Next-- we want to do *this = alpha * temp_MA * M^T + beta * *this. // To make it sparse vector multiplies, since M is sparse, we'd like // to do: for each column c, (*this column c) += temp_MA * (M^T's column c.) // [ignoring the alpha and beta here.] // It's not convenient to process columns in the symmetric // packed format because they don't have a constant stride. However, // we can use the fact that temp_MA * M is symmetric, to just assign // each row of *this instead of each column. // So the final iteration is: // for i = 0... dim-1, // [the i'th row of *this] = beta * [the i'th row of *this] + alpha * // temp_MA * [the i'th column of M]. // Of course, we only process the first 0 ... i elements of this row, // as that's all that are kept in the symmetric packed format. Matrix<Real> temp_this(*this); Real *data = this->data_; const Real *Mdata = M.Data(), *MAdata = temp_MA.Data(); MatrixIndexT temp_MA_stride = temp_MA.Stride(), Mstride = M.Stride(); if (transM == kNoTrans) { // The column of M^T corresponds to the rows of the supplied matrix. for (MatrixIndexT i = 0; i < dim; i++, data += i) { MatrixIndexT num_rows = i + 1, num_cols = Adim; Xgemv_sparsevec(kNoTrans, num_rows, num_cols, alpha, MAdata, temp_MA_stride, Mdata + (i * Mstride), 1, beta, data, 1); } } else { // The column of M^T corresponds to the columns of the supplied matrix. for (MatrixIndexT i = 0; i < dim; i++, data += i) { MatrixIndexT num_rows = i + 1, num_cols = Adim; Xgemv_sparsevec(kNoTrans, num_rows, num_cols, alpha, MAdata, temp_MA_stride, Mdata + i, Mstride, beta, data, 1); } } } template<typename Real> void SpMatrix<Real>::AddMat2Vec(const Real alpha, const MatrixBase<Real> &M, MatrixTransposeType transM, const VectorBase<Real> &v, const Real beta) { this->Scale(beta); KALDI_ASSERT((transM == kNoTrans && this->NumRows() == M.NumRows() && M.NumCols() == v.Dim()) || (transM == kTrans && this->NumRows() == M.NumCols() && M.NumRows() == v.Dim())); if (transM == kNoTrans) { const Real *Mdata = M.Data(), *vdata = v.Data(); Real *data = this->data_; MatrixIndexT dim = this->NumRows(), mcols = M.NumCols(), mstride = M.Stride(); for (MatrixIndexT col = 0; col < mcols; col++, vdata++, Mdata += 1) cblas_Xspr(dim, *vdata*alpha, Mdata, mstride, data); } else { const Real *Mdata = M.Data(), *vdata = v.Data(); Real *data = this->data_; MatrixIndexT dim = this->NumRows(), mrows = M.NumRows(), mstride = M.Stride(); for (MatrixIndexT row = 0; row < mrows; row++, vdata++, Mdata += mstride) cblas_Xspr(dim, *vdata*alpha, Mdata, 1, data); } } template<typename Real> void SpMatrix<Real>::AddMat2(const Real alpha, const MatrixBase<Real> &M, MatrixTransposeType transM, const Real beta) { KALDI_ASSERT((transM == kNoTrans && this->NumRows() == M.NumRows()) || (transM == kTrans && this->NumRows() == M.NumCols())); // Cblas has no function *sprk (i.e. symmetric packed rank-k update), so we // use as temporary storage a regular matrix of which we only access its lower // triangle MatrixIndexT this_dim = this->NumRows(), m_other_dim = (transM == kNoTrans ? M.NumCols() : M.NumRows()); if (this_dim == 0) return; if (alpha == 0.0) { if (beta != 1.0) this->Scale(beta); return; } Matrix<Real> temp_mat(*this); // wastefully copies upper triangle too, but this // doesn't dominate O(N) time. // This function call is hard-coded to update the lower triangle. cblas_Xsyrk(transM, this_dim, m_other_dim, alpha, M.Data(), M.Stride(), beta, temp_mat.Data(), temp_mat.Stride()); this->CopyFromMat(temp_mat, kTakeLower); } template<typename Real> void SpMatrix<Real>::AddTp2Sp(const Real alpha, const TpMatrix<Real> &T, MatrixTransposeType transM, const SpMatrix<Real> &A, const Real beta) { Matrix<Real> Tmat(T); AddMat2Sp(alpha, Tmat, transM, A, beta); } template<typename Real> void SpMatrix<Real>::AddVecVec(const Real alpha, const VectorBase<Real> &v, const VectorBase<Real> &w) { int32 dim = this->NumRows(); KALDI_ASSERT(dim == v.Dim() && dim == w.Dim() && dim > 0); cblas_Xspr2(dim, alpha, v.Data(), 1, w.Data(), 1, this->data_); } template<typename Real> void SpMatrix<Real>::AddTp2(const Real alpha, const TpMatrix<Real> &T, MatrixTransposeType transM, const Real beta) { Matrix<Real> Tmat(T); AddMat2(alpha, Tmat, transM, beta); } // Explicit instantiation of the class. // This needs to be after the definition of all the class member functions. template class SpMatrix<float>; template class SpMatrix<double>; template<typename Real> Real TraceSpSpLower(const SpMatrix<Real> &A, const SpMatrix<Real> &B) { MatrixIndexT adim = A.NumRows(); KALDI_ASSERT(adim == B.NumRows()); MatrixIndexT dim = (adim*(adim+1))/2; return cblas_Xdot(dim, A.Data(), 1, B.Data(), 1); } // Instantiate the template above. template double TraceSpSpLower(const SpMatrix<double> &A, const SpMatrix<double> &B); template float TraceSpSpLower(const SpMatrix<float> &A, const SpMatrix<float> &B); // Instantiate the template above. template float SolveQuadraticMatrixProblem(const SpMatrix<float> &Q, const MatrixBase<float> &Y, const SpMatrix<float> &SigmaInv, const SolverOptions &opts, MatrixBase<float> *M); template double SolveQuadraticMatrixProblem(const SpMatrix<double> &Q, const MatrixBase<double> &Y, const SpMatrix<double> &SigmaInv, const SolverOptions &opts, MatrixBase<double> *M); // Instantiate the template above. template float SolveDoubleQuadraticMatrixProblem( const MatrixBase<float> &G, const SpMatrix<float> &P1, const SpMatrix<float> &P2, const SpMatrix<float> &Q1, const SpMatrix<float> &Q2, const SolverOptions &opts, MatrixBase<float> *M); template double SolveDoubleQuadraticMatrixProblem( const MatrixBase<double> &G, const SpMatrix<double> &P1, const SpMatrix<double> &P2, const SpMatrix<double> &Q1, const SpMatrix<double> &Q2, const SolverOptions &opts, MatrixBase<double> *M); } // namespace kaldi |