Blame view

src/matrix/srfft.h 5.19 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
  // matrix/srfft.h
  
  // Copyright 2009-2011  Microsoft Corporation;  Go Vivace Inc.
  //                2014  Daniel Povey
  //
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  //
  // This file includes a modified version of code originally published in Malvar,
  // H., "Signal processing with lapped transforms, " Artech House, Inc., 1992.  The
  // current copyright holder of the original code, Henrique S. Malvar, has given
  // his permission for the release of this modified version under the Apache
  // License v2.0.
  
  #ifndef KALDI_MATRIX_SRFFT_H_
  #define KALDI_MATRIX_SRFFT_H_
  
  #include "matrix/kaldi-vector.h"
  #include "matrix/kaldi-matrix.h"
  
  namespace kaldi {
  
  /// @addtogroup matrix_funcs_misc
  /// @{
  
  
  // This class is based on code by Henrique (Rico) Malvar, from his book
  // "Signal Processing with Lapped Transforms" (1992).  Copied with
  // permission, optimized by Go Vivace Inc., and converted into C++ by
  // Microsoft Corporation
  // This is a more efficient way of doing the complex FFT than ComplexFft
  // (declared in matrix-functios.h), but it only works for powers of 2.
  // Note: in multi-threaded code, you would need to have one of these objects per
  // thread, because multiple calls to Compute in parallel would not work.
  template<typename Real>
  class SplitRadixComplexFft {
   public:
    typedef MatrixIndexT Integer;
  
    // N is the number of complex points (must be a power of two, or this
    // will crash).  Note that the constructor does some work so it's best to
    // initialize the object once and do the computation many times.
    SplitRadixComplexFft(Integer N);
  
    // Copy constructor
    SplitRadixComplexFft(const SplitRadixComplexFft &other);
  
    // Does the FFT computation, given pointers to the real and
    // imaginary parts.  If "forward", do the forward FFT; else
    // do the inverse FFT (without the 1/N factor).
    // xr and xi are pointers to zero-based arrays of size N,
    // containing the real and imaginary parts
    // respectively.
    void Compute(Real *xr, Real *xi, bool forward) const;
  
    // This version of Compute takes a single array of size N*2,
    // containing [ r0 im0 r1 im1 ... ].  Otherwise its behavior is  the
    // same as the version above.
    void Compute(Real *x, bool forward);
  
  
    // This version of Compute is const; it operates on an array of size N*2
    // containing [ r0 im0 r1 im1 ... ], but it uses the argument "temp_buffer" as
    // temporary storage instead of a class-member variable.  It will allocate it if
    // needed.
    void Compute(Real *x, bool forward, std::vector<Real> *temp_buffer) const;
  
    ~SplitRadixComplexFft();
  
   protected:
    // temp_buffer_ is allocated only if someone calls Compute with only one Real*
    // argument and we need a temporary buffer while creating interleaved data.
    std::vector<Real> temp_buffer_;
   private:
    void ComputeTables();
    void ComputeRecursive(Real *xr, Real *xi, Integer logn) const;
    void BitReversePermute(Real *x, Integer logn) const;
  
    Integer N_;
    Integer logn_;  // log(N)
  
    Integer *brseed_;
    // brseed is Evans' seed table, ref:  (Ref: D. M. W.
    // Evans, "An improved digit-reversal permutation algorithm ...",
    // IEEE Trans. ASSP, Aug. 1987, pp. 1120-1125).
    Real **tab_;       // Tables of butterfly coefficients.
  
    // Disallow assignment.
    SplitRadixComplexFft &operator =(const SplitRadixComplexFft<Real> &other);
  };
  
  template<typename Real>
  class SplitRadixRealFft: private SplitRadixComplexFft<Real> {
   public:
    SplitRadixRealFft(MatrixIndexT N):  // will fail unless N>=4 and N is a power of 2.
        SplitRadixComplexFft<Real> (N/2), N_(N) { }
  
    // Copy constructor
    SplitRadixRealFft(const SplitRadixRealFft<Real> &other):
        SplitRadixComplexFft<Real>(other), N_(other.N_) { }
  
    /// If forward == true, this function transforms from a sequence of N real points to its complex fourier
    /// transform; otherwise it goes in the reverse direction.  If you call it
    /// in the forward and then reverse direction and multiply by 1.0/N, you
    /// will get back the original data.
    /// The interpretation of the complex-FFT data is as follows: the array
    /// is a sequence of complex numbers C_n of length N/2 with (real, im) format,
    /// i.e. [real0, real_{N/2}, real1, im1, real2, im2, real3, im3, ...].
    void Compute(Real *x, bool forward);
  
  
    /// This is as the other Compute() function, but it is a const version that
    /// uses a user-supplied buffer.
    void Compute(Real *x, bool forward, std::vector<Real> *temp_buffer) const;
  
   private:
    // Disallow assignment.
    SplitRadixRealFft &operator =(const SplitRadixRealFft<Real> &other);
    int N_;
  };
  
  
  /// @} end of "addtogroup matrix_funcs_misc"
  
  } // end namespace kaldi
  
  
  #endif