Blame view
src/nnet/nnet-component-test.cc
9.6 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
// nnet/nnet-component-test.cc // Copyright 2014-2015 Brno University of Technology (author: Karel Vesely), // The Johns Hopkins University (author: Sri Harish Mallidi) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <sstream> #include <fstream> #include <algorithm> #include "nnet/nnet-component.h" #include "nnet/nnet-nnet.h" #include "nnet/nnet-convolutional-component.h" #include "nnet/nnet-max-pooling-component.h" #include "util/common-utils.h" namespace kaldi { namespace nnet1 { /* * Helper functions */ template<typename Real> void ReadCuMatrixFromString(const std::string& s, CuMatrix<Real>* m) { std::istringstream is(s + " "); m->Read(is, false); // false for ascii } Component* ReadComponentFromString(const std::string& s) { std::istringstream is(s + " "); return Component::Read(is, false); // false for ascii } /* * Unit tests, */ void UnitTestLengthNorm() { // make L2-length normalization component, Component* c = ReadComponentFromString("<LengthNormComponent> 5 5"); // prepare input, CuMatrix<BaseFloat> mat_in; ReadCuMatrixFromString("[ 1 2 3 4 5 2 3 5 6 8 ] ", &mat_in); // propagate, CuMatrix<BaseFloat> mat_out; c->Propagate(mat_in, &mat_out); // check the length, mat_out.MulElements(mat_out); // ^2, CuVector<BaseFloat> check_length_is_one(2); check_length_is_one.AddColSumMat(1.0, mat_out, 0.0); // sum_of_cols(x^2), check_length_is_one.ApplyPow(0.5); // L2norm = sqrt(sum_of_cols(x^2)), CuVector<BaseFloat> ones(2); ones.Set(1.0); AssertEqual(check_length_is_one, ones); } void UnitTestSimpleSentenceAveragingComponent() { // make SimpleSentenceAveraging component, Component* c = ReadComponentFromString( "<SimpleSentenceAveragingComponent> 2 2 <GradientBoost> 10.0" ); // prepare input, CuMatrix<BaseFloat> mat_in; ReadCuMatrixFromString("[ 0 0.5 1 1 2 1.5 ] ", &mat_in); // propagate, CuMatrix<BaseFloat> mat_out; c->Propagate(mat_in, &mat_out); // check the output, CuVector<BaseFloat> ones(2); ones.Set(1.0); for (int32 i = 0; i < mat_out.NumRows(); i++) { AssertEqual(mat_out.Row(i), ones); } // backpropagate, CuMatrix<BaseFloat> dummy1(3, 2), dummy2(3, 2), diff_out(mat_in), diff_in; // the average 1.0 in 'diff_in' will be boosted by 10.0, c->Backpropagate(dummy1, dummy2, diff_out, &diff_in); // check the output, CuVector<BaseFloat> tens(2); tens.Set(10); for (int32 i = 0; i < diff_in.NumRows(); i++) { AssertEqual(diff_in.Row(i), tens); } } void UnitTestConvolutionalComponentUnity() { // make 'identity' convolutional component, Component* c = ReadComponentFromString("<ConvolutionalComponent> 5 5 \ <PatchDim> 1 <PatchStep> 1 <PatchStride> 5 \ <LearnRateCoef> 1.0 <BiasLearnRateCoef> 1.0 \ <MaxNorm> 0 \ <Filters> [ 1 \ ] <Bias> [ 0 ]" ); // prepare input, CuMatrix<BaseFloat> mat_in; ReadCuMatrixFromString("[ 1 2 3 4 5 ] ", &mat_in); // propagate, CuMatrix<BaseFloat> mat_out; c->Propagate(mat_in, &mat_out); KALDI_LOG << "mat_in" << mat_in << "mat_out" << mat_out; AssertEqual(mat_in, mat_out); // backpropagate, CuMatrix<BaseFloat> mat_out_diff(mat_in), mat_in_diff; c->Backpropagate(mat_in, mat_out, mat_out_diff, &mat_in_diff); KALDI_LOG << "mat_out_diff " << mat_out_diff << " mat_in_diff " << mat_in_diff; AssertEqual(mat_out_diff, mat_in_diff); // clean, delete c; } void UnitTestConvolutionalComponent3x3() { // make 3x3 convolutional component, // design such weights and input so output is zero, Component* c = ReadComponentFromString("<ConvolutionalComponent> 9 15 \ <PatchDim> 3 <PatchStep> 1 <PatchStride> 5 \ <LearnRateCoef> 1.0 <BiasLearnRateCoef> 1.0 \ <MaxNorm> 0 \ <Filters> [ -1 -2 -7 0 0 0 1 2 7 ; \ -1 0 1 -3 0 3 -2 2 0 ; \ -4 0 0 -3 0 3 4 0 0 ] \ <Bias> [ -20 -20 -20 ]" ); // prepare input, reference output, CuMatrix<BaseFloat> mat_in; ReadCuMatrixFromString("[ 1 3 5 7 9 2 4 6 8 10 3 5 7 9 11 ]", &mat_in); CuMatrix<BaseFloat> mat_out_ref; ReadCuMatrixFromString("[ 0 0 0 0 0 0 0 0 0 ]", &mat_out_ref); // propagate, CuMatrix<BaseFloat> mat_out; c->Propagate(mat_in, &mat_out); KALDI_LOG << "mat_in" << mat_in << "mat_out" << mat_out; AssertEqual(mat_out, mat_out_ref); // prepare mat_out_diff, mat_in_diff_ref, CuMatrix<BaseFloat> mat_out_diff; ReadCuMatrixFromString("[ 1 0 0 1 1 0 1 1 1 ]", &mat_out_diff); // hand-computed back-propagated values, CuMatrix<BaseFloat> mat_in_diff_ref; ReadCuMatrixFromString("[ -1 -4 -15 -8 -6 0 -3 -6 3 6 1 1 14 11 7 ]", &mat_in_diff_ref); // backpropagate, CuMatrix<BaseFloat> mat_in_diff; c->Backpropagate(mat_in, mat_out, mat_out_diff, &mat_in_diff); KALDI_LOG << "mat_in_diff " << mat_in_diff << " mat_in_diff_ref " << mat_in_diff_ref; AssertEqual(mat_in_diff, mat_in_diff_ref); // clean, delete c; } void UnitTestMaxPoolingComponent() { // make max-pooling component, assuming 4 conv. neurons, // non-overlapping pool of size 3, Component* c = Component::Init( "<MaxPoolingComponent> <InputDim> 24 <OutputDim> 8 \ <PoolSize> 3 <PoolStep> 3 <PoolStride> 4" ); // input matrix, CuMatrix<BaseFloat> mat_in; ReadCuMatrixFromString("[ 3 8 2 9 \ 8 3 9 3 \ 2 4 9 6 \ \ 2 4 2 0 \ 6 4 9 4 \ 7 3 0 3;\ \ 5 4 7 8 \ 3 9 5 6 \ 3 4 8 9 \ \ 5 4 5 6 \ 3 1 4 5 \ 8 2 1 7 ]", &mat_in); // expected output (max values in columns), CuMatrix<BaseFloat> mat_out_ref; ReadCuMatrixFromString("[ 8 8 9 9 \ 7 4 9 4;\ 5 9 8 9 \ 8 4 5 7 ]", &mat_out_ref); // propagate, CuMatrix<BaseFloat> mat_out; c->Propagate(mat_in, &mat_out); KALDI_LOG << "mat_out" << mat_out << "mat_out_ref" << mat_out_ref; AssertEqual(mat_out, mat_out_ref); // locations of max values will be shown, CuMatrix<BaseFloat> mat_out_diff(mat_out); mat_out_diff.Set(1); // expected backpropagated values (hand-computed), CuMatrix<BaseFloat> mat_in_diff_ref; ReadCuMatrixFromString("[ 0 1 0 1 \ 1 0 1 0 \ 0 0 1 0 \ \ 0 1 0 0 \ 0 1 1 1 \ 1 0 0 0;\ \ 1 0 0 0 \ 0 1 0 0 \ 0 0 1 1 \ \ 0 1 1 0 \ 0 0 0 0 \ 1 0 0 1 ]", &mat_in_diff_ref); // backpropagate, CuMatrix<BaseFloat> mat_in_diff; c->Backpropagate(mat_in, mat_out, mat_out_diff, &mat_in_diff); KALDI_LOG << "mat_in_diff " << mat_in_diff << " mat_in_diff_ref " << mat_in_diff_ref; AssertEqual(mat_in_diff, mat_in_diff_ref); delete c; } void UnitTestDropoutComponent() { Component* c = ReadComponentFromString("<Dropout> 100 100 <DropoutRetention> 0.7"); // buffers, CuMatrix<BaseFloat> in(777, 100), out, out_diff, in_diff; // init, in.Set(2.0); // propagate, c->Propagate(in, &out); AssertEqual(in.Sum(), out.Sum(), 0.01); // backprop, out_diff = in; c->Backpropagate(in, out, out_diff, &in_diff); AssertEqual(in_diff, out); delete c; } } // namespace nnet1 } // namespace kaldi int main() { using namespace kaldi; using namespace kaldi::nnet1; for (kaldi::int32 loop = 0; loop < 2; loop++) { #if HAVE_CUDA == 1 if (loop == 0) // use no GPU, CuDevice::Instantiate().SelectGpuId("no"); else // use GPU when available, CuDevice::Instantiate().SelectGpuId("optional"); #endif // unit-tests : UnitTestLengthNorm(); UnitTestSimpleSentenceAveragingComponent(); UnitTestConvolutionalComponentUnity(); UnitTestConvolutionalComponent3x3(); UnitTestMaxPoolingComponent(); UnitTestDropoutComponent(); // end of unit-tests, if (loop == 0) KALDI_LOG << "Tests without GPU use succeeded."; else KALDI_LOG << "Tests with GPU use (if available) succeeded."; } #if HAVE_CUDA == 1 CuDevice::Instantiate().PrintProfile(); #endif return 0; } |