Blame view
src/nnet/nnet-component.h
10.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
// nnet/nnet-component.h // Copyright 2011-2016 Brno University of Technology (Author: Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET_NNET_COMPONENT_H_ #define KALDI_NNET_NNET_COMPONENT_H_ #include <iostream> #include <string> #include "base/kaldi-common.h" #include "matrix/matrix-lib.h" #include "cudamatrix/cu-matrix.h" #include "cudamatrix/cu-vector.h" #include "nnet/nnet-trnopts.h" namespace kaldi { namespace nnet1 { /** * Abstract class, building block of the network. * It is able to propagate (PropagateFnc: compute the output based on its input) * and backpropagate (BackpropagateFnc: i.e. transform loss derivative w.r.t. output to derivative w.r.t. the input) * the formulas are implemented in descendant classes (AffineTransform,Sigmoid,Softmax,...). */ class Component { /// Component type identification mechanism, public: /// Types of Components, typedef enum { kUnknown = 0x0, kUpdatableComponent = 0x0100, kAffineTransform, kLinearTransform, kConvolutionalComponent, kLstmProjected, kBlstmProjected, kRecurrentComponent, kActivationFunction = 0x0200, kSoftmax, kHiddenSoftmax, kBlockSoftmax, kSigmoid, kTanh, kParametricRelu, kDropout, kLengthNormComponent, kTranform = 0x0400, kRbm, kSplice, kCopy, kTranspose, kBlockLinearity, kAddShift, kRescale, kKlHmm = 0x0800, kSentenceAveragingComponent, /* deprecated */ kSimpleSentenceAveragingComponent, kAveragePoolingComponent, kMaxPoolingComponent, kFramePoolingComponent, kParallelComponent, kMultiBasisComponent } ComponentType; /// A pair of type and marker, struct key_value { const Component::ComponentType key; const char *value; }; /// The table with pairs of Component types and markers /// (defined in nnet-component.cc), static const struct key_value kMarkerMap[]; /// Converts component type to marker, static const char* TypeToMarker(ComponentType t); /// Converts marker to component type (case insensitive), static ComponentType MarkerToType(const std::string &s); /// Generic interface of a component, public: Component(int32 input_dim, int32 output_dim): input_dim_(input_dim), output_dim_(output_dim) { } virtual ~Component() { } /// Copy component (deep copy), virtual Component* Copy() const = 0; /// Get Type Identification of the component, virtual ComponentType GetType() const = 0; /// Check if componeny has 'Updatable' interface (trainable components), virtual bool IsUpdatable() const { return false; } /// Check if component has 'Recurrent' interface (trainable and recurrent), virtual bool IsMultistream() const { return false; } /// Get the dimension of the input, int32 InputDim() const { return input_dim_; } /// Get the dimension of the output, int32 OutputDim() const { return output_dim_; } /// Perform forward-pass propagation 'in' -> 'out', void Propagate(const CuMatrixBase<BaseFloat> &in, CuMatrix<BaseFloat> *out); /// Perform backward-pass propagation 'out_diff' -> 'in_diff'. /// Note: 'in' and 'out' will be used only sometimes... void Backpropagate(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrix<BaseFloat> *in_diff); /// Initialize component from a line in config file, static Component* Init(const std::string &conf_line); /// Read the component from a stream (static method), static Component* Read(std::istream &is, bool binary); /// Write the component to a stream, void Write(std::ostream &os, bool binary) const; /// Print some additional info (after <ComponentName> and the dims), virtual std::string Info() const { return ""; } /// Print some additional info about gradient (after <...> and dims), virtual std::string InfoGradient() const { return ""; } /// Abstract interface for propagation/backpropagation protected: /// Forward pass transformation (to be implemented by descending class...) virtual void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) = 0; /// Backward pass transformation (to be implemented by descending class...) virtual void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) = 0; /// Virtual interface for initialization and I/O, protected: /// Initialize internal data of a component virtual void InitData(std::istream &is) { } /// Reads the component content virtual void ReadData(std::istream &is, bool binary) { } /// Writes the component content virtual void WriteData(std::ostream &os, bool binary) const { } /// Data members, protected: int32 input_dim_; ///< Dimension of the input of the Component, int32 output_dim_; ///< Dimension of the output of the Component, /// Private members (descending classes cannot call this), private: /// Create a new intance of component, static Component* NewComponentOfType( ComponentType t, int32 input_dim, int32 output_dim ); }; /** * Class UpdatableComponent is a Component which has trainable parameters, * it contains SGD training hyper-parameters in NnetTrainOptions. * The constants 'learning_rate_coef_' and 'bias_learn_rate_coef_' * are separate, and should be stored by ::WriteData(...), */ class UpdatableComponent : public Component { public: UpdatableComponent(int32 input_dim, int32 output_dim): Component(input_dim, output_dim), learn_rate_coef_(1.0), bias_learn_rate_coef_(1.0) { } virtual ~UpdatableComponent() { } /// Check if contains trainable parameters, bool IsUpdatable() const { return true; } /// Number of trainable parameters, virtual int32 NumParams() const = 0; /// Get gradient reshaped as a vector, virtual void GetGradient(VectorBase<BaseFloat> *gradient) const = 0; /// Get the trainable parameters reshaped as a vector, virtual void GetParams(VectorBase<BaseFloat> *params) const = 0; /// Set the trainable parameters from, reshaped as a vector, virtual void SetParams(const VectorBase<BaseFloat> ¶ms) = 0; /// Compute gradient and update parameters, virtual void Update(const CuMatrixBase<BaseFloat> &input, const CuMatrixBase<BaseFloat> &diff) = 0; /// Set the training options to the component, virtual void SetTrainOptions(const NnetTrainOptions &opts) { opts_ = opts; } /// Get the training options from the component, const NnetTrainOptions& GetTrainOptions() const { return opts_; } /// Set the learn-rate coefficient, virtual void SetLearnRateCoef(BaseFloat val) { learn_rate_coef_ = val; } /// Set the learn-rate coefficient for bias, virtual void SetBiasLearnRateCoef(BaseFloat val) { bias_learn_rate_coef_ = val; } /// Initialize the content of the component by the 'line' from the prototype, virtual void InitData(std::istream &is) = 0; protected: /// Option-class with training hyper-parameters, NnetTrainOptions opts_; /// Scalar applied to learning rate for weight matrices /// (to be used in ::Update method), BaseFloat learn_rate_coef_; /// Scalar applied to learning rate for bias /// (to be used in ::Update method), BaseFloat bias_learn_rate_coef_; }; /** * Class MultistreamComponent is an extension of UpdatableComponent * for recurrent networks, which are trained with parallel sequences. */ class MultistreamComponent : public UpdatableComponent { public: MultistreamComponent(int32 input_dim, int32 output_dim): UpdatableComponent(input_dim, output_dim) { } bool IsMultistream() const { return true; } virtual void SetSeqLengths(const std::vector<int32>& sequence_lengths) { sequence_lengths_ = sequence_lengths; } int32 NumStreams() const { return std::max<int32>(1, sequence_lengths_.size()); } /// Optional function to reset the transfer of context (not used for BLSTMs virtual void ResetStreams(const std::vector<int32>& stream_reset_flag) { } protected: std::vector<int32> sequence_lengths_; }; /* * Inline methods for ::Component, */ inline void Component::Propagate(const CuMatrixBase<BaseFloat> &in, CuMatrix<BaseFloat> *out) { // Check the dims if (input_dim_ != in.NumCols()) { KALDI_ERR << "Non-matching dims on the input of " << TypeToMarker(GetType()) << " component. The input-dim is " << input_dim_ << ", the data had " << in.NumCols() << " dims."; } // Allocate target buffer out->Resize(in.NumRows(), output_dim_, kSetZero); // reset // Call the propagation implementation of the component PropagateFnc(in, out); } inline void Component::Backpropagate(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrix<BaseFloat> *in_diff) { // Check the dims, if (OutputDim() != out_diff.NumCols()) { KALDI_ERR << "Non-matching dims! Component output dim " << OutputDim() << ", the dim of output derivatives " << out_diff.NumCols(); } int32 num_frames = out_diff.NumRows(); KALDI_ASSERT(num_frames == in.NumRows()); KALDI_ASSERT(num_frames == out.NumRows()); KALDI_ASSERT(InputDim() == in.NumCols()); KALDI_ASSERT(OutputDim() == out.NumCols()); // Allocate target buffer, KALDI_ASSERT(in_diff != NULL); in_diff->Resize(num_frames, InputDim(), kSetZero); // reset, // Call the 'virtual' backprop function, BackpropagateFnc(in, out, out_diff, in_diff); } } // namespace nnet1 } // namespace kaldi #endif // KALDI_NNET_NNET_COMPONENT_H_ |