Blame view
src/nnet/nnet-frame-pooling-component.h
9.97 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
// nnet/nnet-frame-pooling-component.h // Copyright 2014 Brno University of Technology (author: Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET_NNET_FRAME_POOLING_COMPONENT_H_ #define KALDI_NNET_NNET_FRAME_POOLING_COMPONENT_H_ #include <string> #include <vector> #include <algorithm> #include <sstream> #include "nnet/nnet-component.h" #include "nnet/nnet-utils.h" #include "cudamatrix/cu-math.h" namespace kaldi { namespace nnet1 { /** * FramePoolingComponent : * The input/output matrices are split to frames of width 'feature_dim_'. * Here we do weighted pooling of frames along the temporal axis, * given a frame-offset of leftmost frame, the pool-size is defined * by weight-vector size. */ class FramePoolingComponent : public UpdatableComponent { public: FramePoolingComponent(int32 dim_in, int32 dim_out): UpdatableComponent(dim_in, dim_out), feature_dim_(0), normalize_(false) { } ~FramePoolingComponent() { } Component* Copy() const { return new FramePoolingComponent(*this); } ComponentType GetType() const { return kFramePoolingComponent; } /** * Here the offsets are w.r.t. central frames, which has offset 0. * Note.: both the offsets and pool sizes can be negative. */ void InitData(std::istream &is) { // temporary, for initialization, std::vector<int32> pool_size; std::vector<int32> central_offset; Vector<BaseFloat> pool_weight; float learn_rate_coef = 0.01; // parse config std::string token; while (is >> std::ws, !is.eof()) { ReadToken(is, false, &token); /**/ if (token == "<FeatureDim>") ReadBasicType(is, false, &feature_dim_); else if (token == "<CentralOffset>") ReadIntegerVector(is, false, ¢ral_offset); else if (token == "<PoolSize>") ReadIntegerVector(is, false, &pool_size); else if (token == "<PoolWeight>") pool_weight.Read(is, false); else if (token == "<LearnRateCoef>") ReadBasicType(is, false, &learn_rate_coef); else if (token == "<Normalize>") ReadBasicType(is, false, &normalize_); else KALDI_ERR << "Unknown token " << token << ", a typo in config?" << " (FeatureDim|CentralOffset <vec>|PoolSize <vec>|LearnRateCoef|Normalize)"; } // check inputs: KALDI_ASSERT(feature_dim_ > 0); KALDI_ASSERT(central_offset.size() > 0); KALDI_ASSERT(central_offset.size() == pool_size.size()); // initialize: int32 num_frames = InputDim() / feature_dim_; int32 central_frame = (num_frames -1) / 2; int32 num_pools = central_offset.size(); offset_.resize(num_pools); weight_.resize(num_pools); for (int32 p = 0; p < num_pools; p++) { offset_[p] = central_frame + central_offset[p] + std::min(0, pool_size[p]+1); weight_[p].Resize(std::abs(pool_size[p])); weight_[p].Set(1.0/std::abs(pool_size[p])); } learn_rate_coef_ = learn_rate_coef; if (pool_weight.Dim() != 0) { KALDI_LOG << "Initializing from pool-weight vector"; int32 num_weights = 0; for (int32 p = 0; p < num_pools; p++) { weight_[p].CopyFromVec(pool_weight.Range(num_weights, weight_[p].Dim())); num_weights += weight_[p].Dim(); } KALDI_ASSERT(num_weights == pool_weight.Dim()); } // check that offsets are within the splice we had, for (int32 p = 0; p < num_pools; p++) { KALDI_ASSERT(offset_[p] >= 0); KALDI_ASSERT(offset_[p] + weight_[p].Dim() <= num_frames); } } /** * Here the offsets are w.r.t. leftmost frame from splice, its offset is 0. * If we spliced +/- 15 frames, the central frames has index '15'. */ void ReadData(std::istream &is, bool binary) { // get the input dimension before splicing ExpectToken(is, binary, "<FeatureDim>"); ReadBasicType(is, binary, &feature_dim_); ExpectToken(is, binary, "<LearnRateCoef>"); ReadBasicType(is, binary, &learn_rate_coef_); ExpectToken(is, binary, "<Normalize>"); ReadBasicType(is, binary, &normalize_); // read the offsets w.r.t. central frame ExpectToken(is, binary, "<FrameOffset>"); ReadIntegerVector(is, binary, &offset_); // read the frame-weights ExpectToken(is, binary, "<FrameWeight>"); int32 num_pools = offset_.size(); weight_.resize(num_pools); for (int32 p = 0; p < num_pools; p++) { weight_[p].Read(is, binary); } // // Sanity checks: // KALDI_ASSERT(input_dim_ % feature_dim_ == 0); KALDI_ASSERT(output_dim_ % feature_dim_ == 0); KALDI_ASSERT(output_dim_ / feature_dim_ == num_pools); KALDI_ASSERT(offset_.size() == weight_.size()); // check the shifts don't exceed the splicing int32 total_frame = InputDim() / feature_dim_; for (int32 p = 0; p < num_pools; p++) { KALDI_ASSERT(offset_[p] >= 0); KALDI_ASSERT(offset_[p] + (weight_[p].Dim()-1) < total_frame); } // } void WriteData(std::ostream &os, bool binary) const { WriteToken(os, binary, "<FeatureDim>"); WriteBasicType(os, binary, feature_dim_); WriteToken(os, binary, "<LearnRateCoef>"); WriteBasicType(os, binary, learn_rate_coef_); WriteToken(os, binary, "<Normalize>"); WriteBasicType(os, binary, normalize_); WriteToken(os, binary, "<FrameOffset>"); WriteIntegerVector(os, binary, offset_); // write pooling weights of individual frames WriteToken(os, binary, "<FrameWeight>"); int32 num_pools = offset_.size(); for (int32 p = 0; p < num_pools; p++) { weight_[p].Write(os, binary); } } int32 NumParams() const { int32 ans = 0; for (int32 p = 0; p < weight_.size(); p++) { ans += weight_[p].Dim(); } return ans; } void GetGradient(VectorBase<BaseFloat> *gradient) const { KALDI_ERR << "Unimplemented."; } void GetParams(VectorBase<BaseFloat>* params) const { KALDI_ASSERT(params->Dim() == NumParams()); int32 offset = 0; for (int32 p = 0; p < weight_.size(); p++) { params->Range(offset, weight_[p].Dim()).CopyFromVec(weight_[p]); offset += weight_[p].Dim(); } KALDI_ASSERT(offset == params->Dim()); } void SetParams(const VectorBase<BaseFloat>& params) { KALDI_ERR << "Unimplemented."; } std::string Info() const { std::ostringstream oss; oss << " (offset,weights) : "; for (int32 p = 0; p < weight_.size(); p++) { oss << "(" << offset_[p] << "," << weight_[p] << "), "; } return oss.str(); } std::string InfoGradient() const { std::ostringstream oss; oss << " lr-coef " << ToString(learn_rate_coef_); oss << " (offset,weights_grad) : "; for (int32 p = 0; p < weight_diff_.size(); p++) { oss << "(" << offset_[p] << ","; // pass the weight vector, remove ' ' as last char oss << weight_diff_[p]; oss.seekp(-1, std::ios_base::cur); oss << "), "; } return oss.str(); } void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) { // check dims KALDI_ASSERT(in.NumCols() % feature_dim_ == 0); KALDI_ASSERT(out->NumCols() % feature_dim_ == 0); // useful dims int32 num_pools = offset_.size(); // compute the output pools for (int32 p = 0; p < num_pools; p++) { CuSubMatrix<BaseFloat> tgt(out->ColRange(p*feature_dim_, feature_dim_)); tgt.SetZero(); // reset for (int32 i = 0; i < weight_[p].Dim(); i++) { tgt.AddMat(weight_[p](i), in.ColRange((offset_[p]+i) * feature_dim_, feature_dim_)); } } } void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) { KALDI_ERR << "Unimplemented."; } void Update(const CuMatrixBase<BaseFloat> &input, const CuMatrixBase<BaseFloat> &diff) { // useful dims int32 num_pools = offset_.size(); // lazy init if (weight_diff_.size() != num_pools) weight_diff_.resize(num_pools); // get the derivatives for (int32 p = 0; p < num_pools; p++) { weight_diff_[p].Resize(weight_[p].Dim(), kSetZero); // reset for (int32 i = 0; i < weight_[p].Dim(); i++) { // multiply matrices element-wise, and sum to get the derivative CuSubMatrix<BaseFloat> in_frame( input.ColRange((offset_[p]+i) * feature_dim_, feature_dim_) ); CuSubMatrix<BaseFloat> diff_frame( diff.ColRange(p * feature_dim_, feature_dim_) ); CuMatrix<BaseFloat> mul_elems(in_frame); mul_elems.MulElements(diff_frame); weight_diff_[p](i) = mul_elems.Sum(); } } // update for (int32 p = 0; p < num_pools; p++) { weight_[p].AddVec(- learn_rate_coef_ * opts_.learn_rate, weight_diff_[p]); } // force to be positive, re-normalize the sum if (normalize_) { for (int32 p = 0; p < num_pools; p++) { weight_[p].ApplyFloor(0.0); weight_[p].Scale(1.0/weight_[p].Sum()); } } } private: int32 feature_dim_; // feature dimension before splicing std::vector<int32> offset_; // vector of pooling offsets /// Vector of pooling weight vectors, std::vector<Vector<BaseFloat> > weight_; /// detivatives of weight vectors, std::vector<Vector<BaseFloat> > weight_diff_; bool normalize_; // apply normalization after each update }; } // namespace nnet1 } // namespace kaldi #endif // KALDI_NNET_NNET_FRAME_POOLING_COMPONENT_H_ |