Blame view
src/nnet/nnet-kl-hmm.h
5.29 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
// nnet/nnet-kl-hmm.h // Copyright 2013 Idiap Research Institute (Author: David Imseng) // Karlsruhe Institute of Technology (Author: Ngoc Thang Vu) // Brno University of Technology (Author: Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET_NNET_KL_HMM_H_ #define KALDI_NNET_NNET_KL_HMM_H_ #include <vector> #include "nnet/nnet-component.h" #include "cudamatrix/cu-math.h" #include "cudamatrix/cu-rand.h" #include "matrix/kaldi-vector.h" #include "matrix/kaldi-matrix.h" namespace kaldi { namespace nnet1 { class KlHmm : public Component { public: KlHmm(int32 dim_in, int32 dim_out): Component(dim_in, dim_out), kl_stats_(dim_out, dim_in, kSetZero) { } ~KlHmm() { } Component* Copy() const { return new KlHmm(*this); } ComponentType GetType() const { return kKlHmm; } void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) { if (kl_inv_q_.NumRows() == 0) { // Copy the CudaMatrix to a Matrix Matrix<BaseFloat> in_tmp(in.NumRows(), in.NumCols()); in.CopyToMat(&in_tmp); // Check if there are posteriors in the Matrix (check on first row), BaseFloat post_sum = in_tmp.Row(0).Sum(); KALDI_ASSERT(ApproxEqual(post_sum, 1.0)); // Get a tmp Matrix of the stats Matrix<BaseFloat> kl_stats_tmp(kl_stats_); // Init a vector to get the sum of the rows (for normalization) Vector<BaseFloat> row_sum(kl_stats_.NumRows(), kSetZero); // Get the sum of the posteriors for normalization row_sum.AddColSumMat(1, kl_stats_tmp); // Apply floor to make sure there is no zero row_sum.ApplyFloor(1e-20); // Invert the sum (to normalize) row_sum.InvertElements(); // Normalizing the statistics vector kl_stats_tmp.MulRowsVec(row_sum); // Apply floor before inversion and logarithm kl_stats_tmp.ApplyFloor(1e-20); // Apply invesion kl_stats_tmp.InvertElements(); // Apply logarithm kl_stats_tmp.ApplyLog(); // Inverted and logged values kl_inv_q_.Resize(kl_stats_.NumRows(), kl_stats_.NumCols()); // Holds now log (1/Q) kl_inv_q_.CopyFromMat(kl_stats_tmp); } // Get the logarithm of the features for the Entropy calculation // Copy the CudaMatrix to a Matrix Matrix<BaseFloat> in_log_tmp(in.NumRows(), in.NumCols()); in.CopyToMat(&in_log_tmp); // Flooring and log in_log_tmp.ApplyFloor(1e-20); in_log_tmp.ApplyLog(); CuMatrix<BaseFloat> log_in(in.NumRows(), in.NumCols()); log_in.CopyFromMat(in_log_tmp); // P*logP CuMatrix<BaseFloat> tmp_entropy(in); tmp_entropy.MulElements(log_in); // Getting the entropy (sum P*logP) CuVector<BaseFloat> in_entropy(in.NumRows(), kSetZero); in_entropy.AddColSumMat(1, tmp_entropy); // sum P*log (1/Q) out->AddMatMat(1, in, kNoTrans, kl_inv_q_, kTrans, 0); // (sum P*logP) + (sum P*log(1/Q) out->AddVecToCols(1, in_entropy); // return the negative KL-divergence out->Scale(-1); } void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) { KALDI_ERR << "Unimplemented"; } /// Reads the component content void ReadData(std::istream &is, bool binary) { kl_stats_.Read(is, binary); KALDI_ASSERT(kl_stats_.NumRows() == output_dim_); KALDI_ASSERT(kl_stats_.NumCols() == input_dim_); } /// Writes the component content void WriteData(std::ostream &os, bool binary) const { kl_stats_.Write(os, binary); } /// Set the statistics matrix void SetStats(const Matrix<BaseFloat> mat) { KALDI_ASSERT(mat.NumRows() == output_dim_); KALDI_ASSERT(mat.NumCols() == input_dim_); kl_stats_.Resize(mat.NumRows(), mat.NumCols()); kl_stats_.CopyFromMat(mat); } /// Accumulate the statistics for KL-HMM paramter estimation, void Accumulate(const Matrix<BaseFloat> &posteriors, const std::vector<int32> &alignment) { KALDI_ASSERT(posteriors.NumRows() == alignment.size()); KALDI_ASSERT(posteriors.NumCols() == kl_stats_.NumCols()); int32 num_frames = alignment.size(); for (int32 i = 0; i < num_frames; i++) { // Casting float posterior to double (fixing numerical issue), Vector<double> temp(posteriors.Row(i)); // Sum the postiors grouped by states from the alignment, kl_stats_.Row(alignment[i]).AddVec(1, temp); } } private: Matrix<double> kl_stats_; CuMatrix<BaseFloat> kl_inv_q_; }; } // namespace nnet1 } // namespace kaldi #endif // KALDI_NNET_NNET_KL_HMM_H_ |