Blame view
src/nnet/nnet-loss.h
6.61 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
// nnet/nnet-loss.h // Copyright 2011-2015 Brno University of Technology (author: Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET_NNET_LOSS_H_ #define KALDI_NNET_NNET_LOSS_H_ #include <string> #include <vector> #include "base/kaldi-common.h" #include "base/timer.h" #include "util/kaldi-holder.h" #include "itf/options-itf.h" #include "cudamatrix/cu-matrix.h" #include "cudamatrix/cu-vector.h" #include "cudamatrix/cu-array.h" #include "hmm/posterior.h" namespace kaldi { namespace nnet1 { struct LossOptions { int32 loss_report_frames; ///< Report loss value every 'report_interval' frames, LossOptions(): loss_report_frames(5*3600*100) // 5h, { } void Register(OptionsItf *opts) { opts->Register("loss-report-frames", &loss_report_frames, "Report loss per blocks of N frames (0 = no reports)"); } }; class LossItf { public: LossItf(LossOptions& opts) { opts_ = opts; } virtual ~LossItf() { } /// Evaluate cross entropy using target-matrix (supports soft labels), virtual void Eval(const VectorBase<BaseFloat> &frame_weights, const CuMatrixBase<BaseFloat> &net_out, const CuMatrixBase<BaseFloat> &target, CuMatrix<BaseFloat> *diff) = 0; /// Evaluate cross entropy using target-posteriors (supports soft labels), virtual void Eval(const VectorBase<BaseFloat> &frame_weights, const CuMatrixBase<BaseFloat> &net_out, const Posterior &target, CuMatrix<BaseFloat> *diff) = 0; /// Generate string with error report, virtual std::string Report() = 0; /// Get loss value (frame average), virtual BaseFloat AvgLoss() = 0; protected: LossOptions opts_; Timer timer_; }; class Xent : public LossItf { public: Xent(LossOptions &opts): LossItf(opts), frames_progress_(0.0), xentropy_progress_(0.0), entropy_progress_(0.0), elapsed_seconds_(0.0) { } ~Xent() { } /// Evaluate cross entropy using target-matrix (supports soft labels), void Eval(const VectorBase<BaseFloat> &frame_weights, const CuMatrixBase<BaseFloat> &net_out, const CuMatrixBase<BaseFloat> &target, CuMatrix<BaseFloat> *diff); /// Evaluate cross entropy using target-posteriors (supports soft labels), void Eval(const VectorBase<BaseFloat> &frame_weights, const CuMatrixBase<BaseFloat> &net_out, const Posterior &target, CuMatrix<BaseFloat> *diff); /// Generate string with error report, std::string Report(); /// Generate string with per-class error report, std::string ReportPerClass(); /// Get loss value (frame average), BaseFloat AvgLoss() { if (frames_.Sum() == 0) return 0.0; return (xentropy_.Sum() - entropy_.Sum()) / frames_.Sum(); } private: // main stats collected per target-class, CuVector<double> frames_; Vector<double> correct_; CuVector<double> xentropy_; CuVector<double> entropy_; // partial results during training, double frames_progress_; double xentropy_progress_; double entropy_progress_; std::vector<float> loss_vec_; double elapsed_seconds_; // weigting buffer, CuVector<BaseFloat> frame_weights_; CuVector<BaseFloat> target_sum_; // loss computation buffers, CuMatrix<BaseFloat> tgt_mat_; CuMatrix<BaseFloat> frames_aux_; CuMatrix<BaseFloat> xentropy_aux_; CuMatrix<BaseFloat> entropy_aux_; // frame classification buffers, CuArray<int32> max_id_out_; CuArray<int32> max_id_tgt_; }; class Mse : public LossItf { public: Mse(LossOptions &opts): LossItf(opts), frames_(0.0), loss_(0.0), frames_progress_(0.0), loss_progress_(0.0) { } ~Mse() { } /// Evaluate mean square error using target-matrix, void Eval(const VectorBase<BaseFloat> &frame_weights, const CuMatrixBase<BaseFloat>& net_out, const CuMatrixBase<BaseFloat>& target, CuMatrix<BaseFloat>* diff); /// Evaluate mean square error using target-posteior, void Eval(const VectorBase<BaseFloat> &frame_weights, const CuMatrixBase<BaseFloat>& net_out, const Posterior& target, CuMatrix<BaseFloat>* diff); /// Generate string with error report std::string Report(); /// Get loss value (frame average), BaseFloat AvgLoss() { if (frames_ == 0) return 0.0; return loss_ / frames_; } private: double frames_; double loss_; double frames_progress_; double loss_progress_; std::vector<float> loss_vec_; CuVector<BaseFloat> frame_weights_; CuMatrix<BaseFloat> tgt_mat_; CuMatrix<BaseFloat> diff_pow_2_; }; class MultiTaskLoss : public LossItf { public: MultiTaskLoss(LossOptions &opts): LossItf(opts) { } ~MultiTaskLoss() { while (loss_vec_.size() > 0) { delete loss_vec_.back(); loss_vec_.pop_back(); } } /// Initialize from string, the format for string 's' is : /// 'multitask,<type1>,<dim1>,<weight1>,...,<typeN>,<dimN>,<weightN>' /// /// Practically it can look like this : /// 'multitask,xent,2456,1.0,mse,440,0.001' void InitFromString(const std::string& s); /// Evaluate mean square error using target-matrix, void Eval(const VectorBase<BaseFloat> &frame_weights, const CuMatrixBase<BaseFloat>& net_out, const CuMatrixBase<BaseFloat>& target, CuMatrix<BaseFloat>* diff) { KALDI_ERR << "This is not supposed to be called!"; } /// Evaluate mean square error using target-posteior, void Eval(const VectorBase<BaseFloat> &frame_weights, const CuMatrixBase<BaseFloat>& net_out, const Posterior& target, CuMatrix<BaseFloat>* diff); /// Generate string with error report std::string Report(); /// Get loss value (frame average), BaseFloat AvgLoss(); private: std::vector<LossItf*> loss_vec_; std::vector<int32> loss_dim_; std::vector<BaseFloat> loss_weights_; std::vector<int32> loss_dim_offset_; CuMatrix<BaseFloat> tgt_mat_; }; } // namespace nnet1 } // namespace kaldi #endif // KALDI_NNET_NNET_LOSS_H_ |