Blame view
src/nnet/nnet-parametric-relu.h
7.42 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
// nnet/nnet-parametric-relu.h // Copyright 2016 Brno University of Technology (author: Murali Karthick B) // 2011-2014 Brno University of Technology (author: Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET_NNET_PARAMETRIC_RELU_H_ #define KALDI_NNET_NNET_PARAMETRIC_RELU_H_ #include <string> #include "nnet/nnet-component.h" #include "nnet/nnet-utils.h" #include "cudamatrix/cu-math.h" namespace kaldi { namespace nnet1 { class ParametricRelu : public UpdatableComponent { public: ParametricRelu(int32 dim_in, int32 dim_out): UpdatableComponent(dim_in, dim_out), alpha_(dim_out), beta_(dim_out), alpha_corr_(dim_out), beta_corr_(dim_out), alpha_learn_rate_coef_(0.0), beta_learn_rate_coef_(0.0) { } ~ParametricRelu() { } Component* Copy() const { return new ParametricRelu(*this); } ComponentType GetType() const { return kParametricRelu; } void InitData(std::istream &is) { // define options BaseFloat alpha = 1.0, beta = 0.0; // parse config std::string token; while (is >> std::ws, !is.eof()) { ReadToken(is, false, &token); /**/ if (token == "<Alpha>") ReadBasicType(is, false, &alpha); else if (token == "<Beta>") ReadBasicType(is, false, &beta); else if (token == "<AlphaLearnRateCoef>") ReadBasicType(is, false, &alpha_learn_rate_coef_); else if (token == "<BetaLearnRateCoef>") ReadBasicType(is, false, &beta_learn_rate_coef_); else KALDI_ERR << "Unknown token " << token << ", a typo in config?" << " (Alpha|Beta|AlphaLearnRateCoef|BetaLearnRateCoef)"; } // Initialize trainable parameters, alpha_.Set(alpha); beta_.Set(beta); } void ReadData(std::istream &is, bool binary) { // Read all the '<Tokens>' in arbitrary order, while ('<' == Peek(is, binary)) { int first_char = PeekToken(is, binary); switch (first_char) { case 'A': ExpectToken(is, binary, "<AlphaLearnRateCoef>"); ReadBasicType(is, binary, &alpha_learn_rate_coef_); break; case 'B': ExpectToken(is, binary, "<BetaLearnRateCoef>"); ReadBasicType(is, binary, &beta_learn_rate_coef_); break; default: std::string token; ReadToken(is, false, &token); KALDI_ERR << "Unknown token: " << token; } } // ParametricRelu scaling parameters alpha_.Read(is, binary); beta_.Read(is, binary); KALDI_ASSERT(alpha_.Dim() == output_dim_); KALDI_ASSERT(beta_.Dim() == output_dim_); } void WriteData(std::ostream &os, bool binary) const { WriteToken(os, binary, "<AlphaLearnRateCoef>"); WriteBasicType(os, binary, alpha_learn_rate_coef_); WriteToken(os, binary, "<BetaLearnRateCoef>"); WriteBasicType(os, binary, beta_learn_rate_coef_); // ParametricRelu scales for each neuron, if (!binary) os << " "; alpha_.Write(os, binary); beta_.Write(os, binary); } int32 NumParams() const { return alpha_.Dim() + beta_.Dim(); } void GetGradient(VectorBase<BaseFloat>* gradient) const { KALDI_ASSERT(gradient->Dim() == NumParams()); int32 alpha_num_elem = alpha_.Dim(); int32 beta_num_elem = beta_.Dim(); gradient->Range(0, alpha_num_elem).CopyFromVec(Vector<BaseFloat>(alpha_corr_)); gradient->Range(alpha_num_elem, beta_num_elem).CopyFromVec(Vector<BaseFloat>(beta_corr_)); } void GetParams(VectorBase<BaseFloat>* params) const { KALDI_ASSERT(params->Dim() == NumParams()); int32 alpha_num_elem = alpha_.Dim(); int32 beta_num_elem = beta_.Dim(); params->Range(0, alpha_num_elem).CopyFromVec(Vector<BaseFloat>(alpha_)); params->Range(alpha_num_elem, beta_num_elem).CopyFromVec(Vector<BaseFloat>(beta_)); } void SetParams(const VectorBase<BaseFloat>& params) { KALDI_ASSERT(params.Dim() == NumParams()); int32 alpha_num_elem = alpha_.Dim(); int32 beta_num_elem = beta_.Dim(); alpha_.CopyFromVec(params.Range(0, alpha_num_elem)); beta_.CopyFromVec(params.Range(alpha_num_elem, beta_num_elem)); } std::string Info() const { return std::string(" alpha") + MomentStatistics(alpha_) + ", alpha-lr-coef " + ToString(alpha_learn_rate_coef_) + " beta" + MomentStatistics(beta_) + ", beta-lr-coef " + ToString(beta_learn_rate_coef_); } std::string InfoGradient() const { return std::string(" alpha_grad") + MomentStatistics(alpha_corr_) + ", alpha-lr-coef " + ToString(alpha_learn_rate_coef_) + " beta_grad" + MomentStatistics(beta_corr_) + ", beta-lr-coef " + ToString(beta_learn_rate_coef_); } void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) { // out = (in < 0.0 ? aplha*in : beta*in) out->ParametricRelu(in, alpha_, beta_); } void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) { // in_diff = (in > 0 ? alpha * out_diff : beta * out_diff) in_diff->DiffParametricRelu(in, out_diff, alpha_, beta_); } void Update(const CuMatrixBase<BaseFloat> &input, const CuMatrixBase<BaseFloat> &diff) { // we use these hyperparameters, const BaseFloat alpha_lr = opts_.learn_rate * alpha_learn_rate_coef_; const BaseFloat beta_lr = opts_.learn_rate * beta_learn_rate_coef_; const BaseFloat mmt = opts_.momentum; if (alpha_learn_rate_coef_ > 0.0) { // get gradient, alpha_aux_ = input; alpha_aux_.ApplyFloor(0.0); // masking positive Relu inputs, alpha_aux_.MulElements(diff); alpha_corr_.AddRowSumMat(1.0, alpha_aux_, mmt); // update, alpha_.AddVec(-alpha_lr, alpha_corr_); } if (beta_learn_rate_coef_ > 0.0) { // get gradient, beta_aux_ = input; beta_aux_.ApplyCeiling(0.0); // masking positive Relu inputs, beta_aux_.MulElements(diff); beta_corr_.AddRowSumMat(1.0, beta_aux_, mmt); beta_.AddVec(-beta_lr, beta_corr_); } } private: CuVector<BaseFloat> alpha_; ///< Vector of 'alphas', one value per neuron. CuVector<BaseFloat> beta_; ///< Vector of 'betas', one value per neuron. CuVector<BaseFloat> alpha_corr_; ///< Vector of 'alpha' updates. CuVector<BaseFloat> beta_corr_; ///< Vector of 'beta' updates. /// Auxiliary matrix for getting 'alpha' updates, CuMatrix<BaseFloat> alpha_aux_; /// Auxiliary matrix for getting 'beta' updates, CuMatrix<BaseFloat> beta_aux_; /// Controls learning rate for alpha (0.0 disables learning), BaseFloat alpha_learn_rate_coef_; /// Controls learning rate for beta (0.0 disables learning), BaseFloat beta_learn_rate_coef_; }; } // namespace nnet1 } // namespace kaldi #endif // KALDI_NNET_NNET_PARAMETRIC_RELU_H_ |