Blame view
src/nnet/nnet-sentence-averaging-component.h
11.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
// nnet/nnet-sentence-averaging-component.h // Copyright 2013-2016 Brno University of Technology (Author: Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET_NNET_SENTENCE_AVERAGING_COMPONENT_H_ #define KALDI_NNET_NNET_SENTENCE_AVERAGING_COMPONENT_H_ #include <string> #include "nnet/nnet-component.h" #include "nnet/nnet-utils.h" #include "cudamatrix/cu-math.h" namespace kaldi { namespace nnet1 { /** * SimpleSentenceAveragingComponent does not have nested network, * it is intended to be used inside of a <ParallelComponent>. * For training use 'nnet-train-perutt'. * * The sentence-averaging typically leads to small gradients, so we boost it 100x * by default (boost = multiply, it's equivalent to applying learning-rate factor). */ class SimpleSentenceAveragingComponent : public Component { public: SimpleSentenceAveragingComponent(int32 dim_in, int32 dim_out): Component(dim_in, dim_out), gradient_boost_(100.0), shrinkage_(0.0), only_summing_(false) { } ~SimpleSentenceAveragingComponent() { } Component* Copy() const { return new SimpleSentenceAveragingComponent(*this); } ComponentType GetType() const { return kSimpleSentenceAveragingComponent; } void InitData(std::istream &is) { // parse config std::string token; while (is >> std::ws, !is.eof()) { ReadToken(is, false, &token); if (token == "<GradientBoost>") ReadBasicType(is, false, &gradient_boost_); else if (token == "<Shrinkage>") ReadBasicType(is, false, &shrinkage_); else if (token == "<OnlySumming>") ReadBasicType(is, false, &only_summing_); else KALDI_ERR << "Unknown token " << token << ", a typo in config?" << " (GradientBoost|Shrinkage|OnlySumming)"; } } void ReadData(std::istream &is, bool binary) { bool end_loop = false; while (!end_loop && '<' == Peek(is, binary)) { int first_char = PeekToken(is, binary); switch (first_char) { case 'G': ExpectToken(is, binary, "<GradientBoost>"); ReadBasicType(is, binary, &gradient_boost_); break; case 'S': ExpectToken(is, binary, "<Shrinkage>"); ReadBasicType(is, binary, &shrinkage_); break; case 'O': ExpectToken(is, binary, "<OnlySumming>"); // compatibility trick, // in some models 'only_summing_' was float '0.0', // from now 'only_summing_' is 'bool': try { ReadBasicType(is, binary, &only_summing_); } catch(const std::exception &e) { KALDI_WARN << "ERROR was handled by exception!"; BaseFloat dummy_float; ReadBasicType(is, binary, &dummy_float); } break; case '!': ExpectToken(is, binary, "<!EndOfComponent>"); default: end_loop = true; } } } void WriteData(std::ostream &os, bool binary) const { WriteToken(os, binary, "<GradientBoost>"); WriteBasicType(os, binary, gradient_boost_); WriteToken(os, binary, "<Shrinkage>"); WriteBasicType(os, binary, shrinkage_); WriteToken(os, binary, "<OnlySumming>"); WriteBasicType(os, binary, only_summing_); } std::string Info() const { return std::string(" gradient-boost ") + ToString(gradient_boost_) + ", shrinkage: " + ToString(shrinkage_) + ", only summing: " + ToString(only_summing_); } std::string InfoGradient() const { return Info(); } void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) { // get the average row-vector, average_row_.Resize(InputDim()); if (only_summing_) { average_row_.AddRowSumMat(1.0, in, 0.0); } else { average_row_.AddRowSumMat(1.0/(in.NumRows()+shrinkage_), in, 0.0); } // copy it on the output, out->AddVecToRows(1.0, average_row_, 0.0); } void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) { // When averaging, a single frame from input influenced all the frames // on the output. So the derivative w.r.t. single input frame is a sum // of the output derivatives, scaled by the averaging constant 1/K. // // In the same time all the input frames of the average influenced // all the output frames. So the loss derivarive is same for all // the input frames coming to the averaging. // // getting the average output diff, average_diff_.Resize(OutputDim()); if (only_summing_) { average_diff_.AddRowSumMat(1.0, out_diff, 0.0); } else { average_diff_.AddRowSumMat(1.0/(out_diff.NumRows()+shrinkage_), out_diff, 0.0); } // copy the derivative into the input diff, (applying gradient-boost!!) in_diff->AddVecToRows(gradient_boost_, average_diff_, 0.0); } private: /// Auxiliary buffer for forward propagation (for average vector), CuVector<BaseFloat> average_row_; /// Auxiliary buffer for back-propagation (for average vector), CuVector<BaseFloat> average_diff_; /// Scalar applied on gradient in backpropagation, BaseFloat gradient_boost_; /// Number of 'imaginary' zero-vectors in the average /// (shrinks the average vector for short sentences), BaseFloat shrinkage_; /// Removes normalization term from arithmetic mean (when true). bool only_summing_; }; /** Deprecated!!!, keeping it as Katka Zmolikova used it in JSALT 2015 */ class SentenceAveragingComponent : public UpdatableComponent { public: SentenceAveragingComponent(int32 dim_in, int32 dim_out): UpdatableComponent(dim_in, dim_out), learn_rate_factor_(100.0) { } ~SentenceAveragingComponent() { } Component* Copy() const { return new SentenceAveragingComponent(*this); } ComponentType GetType() const { return kSentenceAveragingComponent; } void InitData(std::istream &is) { // define options std::string nested_nnet_filename; std::string nested_nnet_proto; // parse config std::string token; while (is >> std::ws, !is.eof()) { ReadToken(is, false, &token); /**/ if (token == "<NestedNnetFilename>") ReadToken(is, false, &nested_nnet_filename); else if (token == "<NestedNnetProto>") ReadToken(is, false, &nested_nnet_proto); else if (token == "<LearnRateFactor>") ReadBasicType(is, false, &learn_rate_factor_); else KALDI_ERR << "Unknown token " << token << " Typo in config?"; } // initialize (read already prepared nnet from file) KALDI_ASSERT((nested_nnet_proto != "") ^ (nested_nnet_filename != "")); // xor, if (nested_nnet_filename != "") nnet_.Read(nested_nnet_filename); if (nested_nnet_proto != "") nnet_.Init(nested_nnet_proto); // check dims of nested nnet KALDI_ASSERT(InputDim() == nnet_.InputDim()); KALDI_ASSERT(OutputDim() == nnet_.OutputDim() + InputDim()); } void ReadData(std::istream &is, bool binary) { nnet_.Read(is, binary); KALDI_ASSERT(nnet_.InputDim() == InputDim()); KALDI_ASSERT(nnet_.OutputDim() + InputDim() == OutputDim()); } void WriteData(std::ostream &os, bool binary) const { nnet_.Write(os, binary); } int32 NumParams() const { return nnet_.NumParams(); } void GetGradient(VectorBase<BaseFloat>* gradient) const { KALDI_ERR << "Unimplemented!"; } void GetParams(VectorBase<BaseFloat>* params) const { KALDI_ASSERT(params->Dim() == NumParams()); Vector<BaseFloat> params_aux; nnet_.GetParams(¶ms_aux); params->CopyFromVec(params_aux); } void SetParams(const VectorBase<BaseFloat>& params) { KALDI_ERR << "Unimplemented!"; } std::string Info() const { return std::string("nested_network { ") + nnet_.Info() + "} "; } std::string InfoGradient() const { return std::string("nested_gradient { ") + nnet_.InfoGradient() + "} "; } void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) { // Get NN output CuMatrix<BaseFloat> out_nnet; nnet_.Propagate(in, &out_nnet); // Get the average row (averaging over the time axis): // averaging corresponds to extraction of a 'constant vector' // code for single sentence, int32 num_inputs = in.NumCols(), nnet_outputs = nnet_.OutputDim(), num_frames = out_nnet.NumRows(); CuVector<BaseFloat> average_row(nnet_outputs); average_row.AddRowSumMat(1.0/num_frames, out_nnet, 0.0); // Forwarding sentence codes along with input features out->ColRange(0, nnet_outputs).AddVecToRows(1.0, average_row, 0.0); out->ColRange(nnet_outputs, num_inputs).CopyFromMat(in); } void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) { if (in_diff == NULL) return; int32 num_inputs = in.NumCols(), nnet_outputs = nnet_.OutputDim(); in_diff->CopyFromMat(out_diff.ColRange(nnet_outputs, num_inputs)); } void Update(const CuMatrixBase<BaseFloat> &input, const CuMatrixBase<BaseFloat> &diff) { // get useful dims, int32 nnet_outputs = nnet_.OutputDim(), num_frames = diff.NumRows(); // Passing the derivative into the nested network. The loss derivative is averaged: // single frame from nested network influenced all the frames in the main network, // so to get the derivative w.r.t. single frame from nested network we sum derivatives // of all frames from main network (and scale by 1/Nframes constant). // // In fact all the frames from nested network influenced all the input frames to main nnet, // so the loss derivarive w.r.t. nested network output is same for all frames in sentence. CuVector<BaseFloat> average_diff(nnet_outputs); average_diff.AddRowSumMat(1.0 / num_frames, diff.ColRange(0, nnet_outputs), 0.0); CuMatrix<BaseFloat> nnet_out_diff(num_frames, nnet_outputs); nnet_out_diff.AddVecToRows(1.0, average_diff, 0.0); // nnet_.Backpropagate(nnet_out_diff, NULL); } void SetTrainOptions(const NnetTrainOptions &opts) { UpdatableComponent::SetTrainOptions(opts_); // Pass the train options to the nnet NnetTrainOptions o(opts); o.learn_rate *= learn_rate_factor_; nnet_.SetTrainOptions(opts_); } private: Nnet nnet_; float learn_rate_factor_; }; /* Deprecated */ } // namespace nnet1 } // namespace kaldi #endif // KALDI_NNET_NNET_SENTENCE_AVERAGING_COMPONENT_H_ |