Blame view
src/nnet/nnet-trnopts.h
3.61 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
// nnet/nnet-trnopts.h // Copyright 2013 Brno University of Technology (Author: Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET_NNET_TRNOPTS_H_ #define KALDI_NNET_NNET_TRNOPTS_H_ #include "base/kaldi-common.h" #include "itf/options-itf.h" namespace kaldi { namespace nnet1 { struct NnetTrainOptions { // option declaration BaseFloat learn_rate; BaseFloat momentum; BaseFloat l2_penalty; BaseFloat l1_penalty; // default values NnetTrainOptions(): learn_rate(0.008), momentum(0.0), l2_penalty(0.0), l1_penalty(0.0) { } // register options void Register(OptionsItf *opts) { opts->Register("learn-rate", &learn_rate, "Learning rate"); opts->Register("momentum", &momentum, "Momentum"); opts->Register("l2-penalty", &l2_penalty, "L2 penalty (weight decay)"); opts->Register("l1-penalty", &l1_penalty, "L1 penalty (promote sparsity)"); } // print for debug purposes friend std::ostream& operator<<(std::ostream& os, const NnetTrainOptions& opts) { os << "NnetTrainOptions : " << "learn_rate" << opts.learn_rate << ", " << "momentum" << opts.momentum << ", " << "l2_penalty" << opts.l2_penalty << ", " << "l1_penalty" << opts.l1_penalty; return os; } }; struct RbmTrainOptions { // option declaration BaseFloat learn_rate; BaseFloat momentum; BaseFloat momentum_max; int32 momentum_steps; int32 momentum_step_period; BaseFloat l2_penalty; // default values RbmTrainOptions(): learn_rate(0.4), momentum(0.5), momentum_max(0.9), momentum_steps(40), momentum_step_period(500000), // 500000 * 40 = 55h of linear increase of momentum l2_penalty(0.0002) { } // register options void Register(OptionsItf *opts) { opts->Register("learn-rate", &learn_rate, "Learning rate"); opts->Register("momentum", &momentum, "Initial momentum for linear scheduling"); opts->Register("momentum-max", &momentum_max, "Final momentum for linear scheduling"); opts->Register("momentum-steps", &momentum_steps, "Number of steps of linear momentum scheduling"); opts->Register("momentum-step-period", &momentum_step_period, "Number of datapoints per single momentum increase step"); opts->Register("l2-penalty", &l2_penalty, "L2 penalty (weight decay, increases mixing-rate)"); } // print for debug purposes friend std::ostream& operator<<(std::ostream& os, const RbmTrainOptions& opts) { os << "RbmTrainOptions : " << "learn_rate" << opts.learn_rate << ", " << "momentum" << opts.momentum << ", " << "momentum_max" << opts.momentum_max << ", " << "momentum_steps" << opts.momentum_steps << ", " << "momentum_step_period" << opts.momentum_step_period << ", " << "l2_penalty" << opts.l2_penalty; return os; } }; // struct RbmTrainOptions } // namespace nnet1 } // namespace kaldi #endif // KALDI_NNET_NNET_TRNOPTS_H_ |