Blame view
src/nnet/nnet-utils.h
8.71 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
// nnet/nnet-utils.h // Copyright 2015 Brno University of Technology (author: Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET_NNET_UTILS_H_ #define KALDI_NNET_NNET_UTILS_H_ #include <string> #include <vector> #include <iterator> #include <algorithm> #include "base/kaldi-common.h" #include "cudamatrix/cu-matrix.h" #include "cudamatrix/cu-array.h" #include "hmm/posterior.h" #include "hmm/transition-model.h" namespace kaldi { namespace nnet1 { /** * Define stream insertion opeartor for 'std::vector', useful for log-prints, */ template <typename T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) { std::copy(v.begin(), v.end(), std::ostream_iterator<T>(os, " ")); return os; } /** * Convert basic type to a string (please don't overuse), */ template <typename T> std::string ToString(const T& t) { std::ostringstream os; os << t; return os.str(); } /** * Get a string with statistics of the data in a vector, * so we can print them easily. */ template <typename Real> std::string MomentStatistics(const VectorBase<Real> &vec) { // we use an auxiliary vector for the higher order powers Vector<Real> vec_aux(vec); Vector<Real> vec_no_mean(vec); // vec with mean subtracted // mean Real mean = vec.Sum() / vec.Dim(); // variance vec_aux.Add(-mean); vec_no_mean = vec_aux; vec_aux.MulElements(vec_no_mean); // (vec-mean)^2 Real variance = vec_aux.Sum() / vec.Dim(); // skewness // - negative : left tail is longer, // - positive : right tail is longer, // - zero : symmetric vec_aux.MulElements(vec_no_mean); // (vec-mean)^3 Real skewness = vec_aux.Sum() / pow(variance, 3.0/2.0) / vec.Dim(); // kurtosis (peakedness) // - makes sense for symmetric distributions (skewness is zero) // - positive : 'sharper peak' than Normal distribution // - negative : 'heavier tails' than Normal distribution // - zero : same peakedness as the Normal distribution vec_aux.MulElements(vec_no_mean); // (vec-mean)^4 Real kurtosis = vec_aux.Sum() / (variance * variance) / vec.Dim() - 3.0; // send the statistics to stream, std::ostringstream ostr; ostr << " ( min " << vec.Min() << ", max " << vec.Max() << ", mean " << mean << ", stddev " << sqrt(variance) << ", skewness " << skewness << ", kurtosis " << kurtosis << " ) "; return ostr.str(); } /** * Overload MomentStatistics to MatrixBase<Real> */ template <typename Real> std::string MomentStatistics(const MatrixBase<Real> &mat) { Vector<Real> vec(mat.NumRows()*mat.NumCols()); vec.CopyRowsFromMat(mat); return MomentStatistics(vec); } /** * Overload MomentStatistics to CuVectorBase<Real> */ template <typename Real> std::string MomentStatistics(const CuVectorBase<Real> &vec) { Vector<Real> vec_host(vec.Dim()); vec.CopyToVec(&vec_host); return MomentStatistics(vec_host); } /** * Overload MomentStatistics to CuMatrix<Real> */ template <typename Real> std::string MomentStatistics(const CuMatrixBase<Real> &mat) { Matrix<Real> mat_host(mat.NumRows(), mat.NumCols()); mat.CopyToMat(&mat_host); return MomentStatistics(mat_host); } /** * Check that matrix contains no nan or inf */ template <typename Real> void CheckNanInf(const CuMatrixBase<Real> &mat, const char *msg = "") { Real sum = mat.Sum(); if (KALDI_ISINF(sum)) { KALDI_ERR << "'inf' in " << msg; } if (KALDI_ISNAN(sum)) { KALDI_ERR << "'nan' in " << msg; } } /** * Get the standard deviation of values in the matrix */ template <typename Real> Real ComputeStdDev(const CuMatrixBase<Real> &mat) { int32 N = mat.NumRows() * mat.NumCols(); Real mean = mat.Sum() / N; CuMatrix<Real> pow_2(mat); pow_2.MulElements(mat); Real var = pow_2.Sum() / N - mean * mean; if (var < 0.0) { KALDI_WARN << "Forcing the variance to be non-negative! " << var << "->0.0"; var = 0.0; } return sqrt(var); } /** * Fill CuMatrix with random numbers (Gaussian distribution): * mu = the mean value, * sigma = standard deviation, * * Using the CPU random generator. */ template <typename Real> void RandGauss(BaseFloat mu, BaseFloat sigma, CuMatrixBase<Real>* mat, struct RandomState* state = NULL) { // fill temporary matrix with 'Normal' samples, Matrix<Real> m(mat->NumRows(), mat->NumCols(), kUndefined); for (int32 r = 0; r < m.NumRows(); r++) { for (int32 c = 0; c < m.NumCols(); c++) { m(r, c) = RandGauss(state); } } // re-shape the distrbution, m.Scale(sigma); m.Add(mu); // export, mat->CopyFromMat(m); } /** * Fill CuMatrix with random numbers (Uniform distribution): * mu = the mean value, * range = the 'width' of the uniform PDF (spanning mu-range/2 .. mu+range/2) * * Using the CPU random generator. */ template <typename Real> void RandUniform(BaseFloat mu, BaseFloat range, CuMatrixBase<Real>* mat, struct RandomState* state = NULL) { // fill temporary matrix with '0..1' samples, Matrix<Real> m(mat->NumRows(), mat->NumCols(), kUndefined); for (int32 r = 0; r < m.NumRows(); r++) { for (int32 c = 0; c < m.NumCols(); c++) { m(r, c) = Rand(state) / static_cast<Real>(RAND_MAX); } } // re-shape the distrbution, m.Scale(range); // 0..range, m.Add(mu - (range / 2.0)); // mu-range/2 .. mu+range/2, // export, mat->CopyFromMat(m); } /** * Fill CuVector with random numbers (Uniform distribution): * mu = the mean value, * range = the 'width' of the uniform PDF (spanning mu-range/2 .. mu+range/2) * * Using the CPU random generator. */ template <typename Real> void RandUniform(BaseFloat mu, BaseFloat range, CuVectorBase<Real>* vec, struct RandomState* state = NULL) { // fill temporary vector with '0..1' samples, Vector<Real> v(vec->Dim(), kUndefined); for (int32 i = 0; i < v.Dim(); i++) { v(i) = Rand(state) / static_cast<Real>(RAND_MAX); } // re-shape the distrbution, v.Scale(range); // 0..range, v.Add(mu - (range / 2.0)); // mu-range/2 .. mu+range/2, // export, vec->CopyFromVec(v); } /** * Build 'integer vector' out of vector of 'matlab-like' representation: * 'b, b:e, b:s:e' * * b,e,s are integers, where: * b = beginning * e = end * s = step * * The sequence includes 'end', 1:3 => [ 1 2 3 ]. * The 'step' has to be positive. */ inline void BuildIntegerVector(const std::vector<std::vector<int32> >& in, std::vector<int32>* out) { // start with empty vector, out->clear(); // loop over records, for (int32 i = 0; i < in.size(); i++) { // process i'th record, int32 beg = 0, end = 0, step = 1; switch (in[i].size()) { case 1: beg = in[i][0]; end = in[i][0]; step = 1; break; case 2: beg = in[i][0]; end = in[i][1]; step = 1; break; case 3: beg = in[i][0]; end = in[i][2]; step = in[i][1]; break; default: KALDI_ERR << "Something is wrong! (should be 1-3) : " << in[i].size(); } // check the inputs, KALDI_ASSERT(beg <= end); KALDI_ASSERT(step > 0); // positive, // append values to vector, for (int32 j = beg; j <= end; j += step) { out->push_back(j); } } } /** * Wrapper with 'CuArray<int32>' output. */ inline void BuildIntegerVector(const std::vector<std::vector<int32> >& in, CuArray<int32>* out) { std::vector<int32> v; BuildIntegerVector(in, &v); (*out) = v; } /** * Wrapper of PosteriorToMatrix with CuMatrix argument. */ template <typename Real> void PosteriorToMatrix(const Posterior &post, const int32 post_dim, CuMatrix<Real> *mat) { Matrix<Real> m; PosteriorToMatrix(post, post_dim, &m); (*mat) = m; } /** * Wrapper of PosteriorToMatrixMapped with CuMatrix argument. */ template <typename Real> void PosteriorToPdfMatrix(const Posterior &post, const TransitionModel &model, CuMatrix<Real> *mat) { Matrix<BaseFloat> m; PosteriorToPdfMatrix(post, model, &m); // Copy to output GPU matrix, (*mat) = m; } } // namespace nnet1 } // namespace kaldi #endif // KALDI_NNET_NNET_UTILS_H_ |