Blame view
src/nnet2bin/nnet-align-compiled.cc
5.98 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
// nnet2bin/nnet-align-compiled.cc // Copyright 2009-2012 Microsoft Corporation // Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "hmm/hmm-utils.h" #include "fstext/fstext-lib.h" #include "decoder/decoder-wrappers.h" #include "decoder/training-graph-compiler.h" #include "nnet2/decodable-am-nnet.h" #include "lat/kaldi-lattice.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; const char *usage = "Align features given neural-net-based model " "Usage: nnet-align-compiled [options] <model-in> <graphs-rspecifier> " "<feature-rspecifier> <alignments-wspecifier> " "e.g.: " " nnet-align-compiled 1.mdl ark:graphs.fsts scp:train.scp ark:1.ali " "or: " " compile-train-graphs tree 1.mdl lex.fst 'ark:sym2int.pl -f 2- words.txt text|' \\ " " ark:- | nnet-align-compiled 1.mdl ark:- scp:train.scp t, ark:1.ali "; ParseOptions po(usage); AlignConfig align_config; std::string use_gpu = "yes"; BaseFloat acoustic_scale = 1.0; BaseFloat transition_scale = 1.0; BaseFloat self_loop_scale = 1.0; std::string per_frame_acwt_wspecifier; align_config.Register(&po); po.Register("transition-scale", &transition_scale, "Transition-probability scale [relative to acoustics]"); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("self-loop-scale", &self_loop_scale, "Scale of self-loop versus non-self-loop " "log probs [relative to acoustics]"); po.Register("write-per-frame-acoustic-loglikes", &per_frame_acwt_wspecifier, "Wspecifier for table of vectors containing the acoustic log-likelihoods " "per frame for each utterance. E.g. ark:foo/per_frame_logprobs.1.ark"); po.Register("use-gpu", &use_gpu, "yes|no|optional|wait, only has effect if compiled with CUDA"); po.Read(argc, argv); if (po.NumArgs() < 4 || po.NumArgs() > 5) { po.PrintUsage(); exit(1); } #if HAVE_CUDA==1 CuDevice::Instantiate().SelectGpuId(use_gpu); #endif std::string model_in_filename = po.GetArg(1), fst_rspecifier = po.GetArg(2), feature_rspecifier = po.GetArg(3), alignment_wspecifier = po.GetArg(4), scores_wspecifier = po.GetOptArg(5); int num_done = 0, num_err = 0, num_retry = 0; double tot_like = 0.0; kaldi::int64 frame_count = 0; { TransitionModel trans_model; AmNnet am_nnet; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } SequentialTableReader<fst::VectorFstHolder> fst_reader(fst_rspecifier); RandomAccessBaseFloatCuMatrixReader feature_reader(feature_rspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); BaseFloatWriter scores_writer(scores_wspecifier); BaseFloatVectorWriter per_frame_acwt_writer(per_frame_acwt_wspecifier); for (; !fst_reader.Done(); fst_reader.Next()) { std::string utt = fst_reader.Key(); if (!feature_reader.HasKey(utt)) { KALDI_WARN << "No features for utterance " << utt; num_err++; continue; } const CuMatrix<BaseFloat> &features = feature_reader.Value(utt); VectorFst<StdArc> decode_fst(fst_reader.Value()); fst_reader.FreeCurrent(); // this stops copy-on-write of the fst // by deleting the fst inside the reader, since we're about to mutate // the fst by adding transition probs. if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_err++; continue; } { // Add transition-probs to the FST. std::vector<int32> disambig_syms; // empty. AddTransitionProbs(trans_model, disambig_syms, transition_scale, self_loop_scale, &decode_fst); } bool pad_input = true; DecodableAmNnet nnet_decodable(trans_model, am_nnet, features, pad_input, acoustic_scale); AlignUtteranceWrapper(align_config, utt, acoustic_scale, &decode_fst, &nnet_decodable, &alignment_writer, &scores_writer, &num_done, &num_err, &num_retry, &tot_like, &frame_count, &per_frame_acwt_writer); } KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<< " frames."; KALDI_LOG << "Retried " << num_retry << " out of " << (num_done + num_err) << " utterances."; KALDI_LOG << "Done " << num_done << ", errors on " << num_err; } #if HAVE_CUDA==1 CuDevice::Instantiate().PrintProfile(); #endif return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |